Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208677614> ?p ?o ?g. }
- W3208677614 abstract "We present a novel workflow for forecasting production in unconventional reservoirs using reduced-order models and machine-learning. Our physics-informed machine-learning workflow addresses the challenges to real-time reservoir management in unconventionals, namely the lack of data (i.e., the time-frame for which the wells have been producing), and the significant computational expense of high-fidelity modeling. We do this by applying the machine-learning paradigm of transfer learning, where we combine fast, but less accurate reduced-order models with slow, but accurate high-fidelity models. We use the Patzek model (Proc Natl Acad Sci 11:19731-19736, https://doi.org/10.1073/pnas.1313380110 , 2013) as the reduced-order model to generate synthetic production data and supplement this data with synthetic production data obtained from high-fidelity discrete fracture network simulations of the site of interest. Our results demonstrate that training with low-fidelity models is not sufficient for accurate forecasting, but transfer learning is able to augment the knowledge and perform well once trained with the small set of results from the high-fidelity model. Such a physics-informed machine-learning (PIML) workflow, grounded in physics, is a viable candidate for real-time history matching and production forecasting in a fractured shale gas reservoir." @default.
- W3208677614 created "2021-11-08" @default.
- W3208677614 creator A5000893456 @default.
- W3208677614 creator A5013039817 @default.
- W3208677614 creator A5019329403 @default.
- W3208677614 creator A5024232271 @default.
- W3208677614 creator A5025218521 @default.
- W3208677614 creator A5040570899 @default.
- W3208677614 creator A5043046558 @default.
- W3208677614 creator A5060765277 @default.
- W3208677614 creator A5061426438 @default.
- W3208677614 creator A5062066010 @default.
- W3208677614 creator A5072498681 @default.
- W3208677614 creator A5073783714 @default.
- W3208677614 creator A5087584536 @default.
- W3208677614 date "2021-11-05" @default.
- W3208677614 modified "2023-10-15" @default.
- W3208677614 title "A machine learning framework for rapid forecasting and history matching in unconventional reservoirs" @default.
- W3208677614 cites W1712887680 @default.
- W3208677614 cites W1969795034 @default.
- W3208677614 cites W2018698606 @default.
- W3208677614 cites W2046155693 @default.
- W3208677614 cites W2133229181 @default.
- W3208677614 cites W2165698076 @default.
- W3208677614 cites W2205745736 @default.
- W3208677614 cites W2340416788 @default.
- W3208677614 cites W2341850669 @default.
- W3208677614 cites W2467719167 @default.
- W3208677614 cites W2482377998 @default.
- W3208677614 cites W2494343957 @default.
- W3208677614 cites W2563751252 @default.
- W3208677614 cites W2591941858 @default.
- W3208677614 cites W2605882470 @default.
- W3208677614 cites W2756292070 @default.
- W3208677614 cites W2761374201 @default.
- W3208677614 cites W2767537559 @default.
- W3208677614 cites W2768433038 @default.
- W3208677614 cites W2792146766 @default.
- W3208677614 cites W2800542668 @default.
- W3208677614 cites W2801128564 @default.
- W3208677614 cites W2887253643 @default.
- W3208677614 cites W2888919222 @default.
- W3208677614 cites W2906011998 @default.
- W3208677614 cites W2935707732 @default.
- W3208677614 cites W2935741399 @default.
- W3208677614 cites W2943521617 @default.
- W3208677614 cites W2989836544 @default.
- W3208677614 cites W2996223216 @default.
- W3208677614 cites W3000019892 @default.
- W3208677614 cites W3005964829 @default.
- W3208677614 cites W3081494129 @default.
- W3208677614 cites W3108582394 @default.
- W3208677614 cites W3163993681 @default.
- W3208677614 cites W4230077286 @default.
- W3208677614 cites W4244920182 @default.
- W3208677614 doi "https://doi.org/10.1038/s41598-021-01023-w" @default.
- W3208677614 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8571309" @default.
- W3208677614 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34741046" @default.
- W3208677614 hasPublicationYear "2021" @default.
- W3208677614 type Work @default.
- W3208677614 sameAs 3208677614 @default.
- W3208677614 citedByCount "16" @default.
- W3208677614 countsByYear W32086776142022 @default.
- W3208677614 countsByYear W32086776142023 @default.
- W3208677614 crossrefType "journal-article" @default.
- W3208677614 hasAuthorship W3208677614A5000893456 @default.
- W3208677614 hasAuthorship W3208677614A5013039817 @default.
- W3208677614 hasAuthorship W3208677614A5019329403 @default.
- W3208677614 hasAuthorship W3208677614A5024232271 @default.
- W3208677614 hasAuthorship W3208677614A5025218521 @default.
- W3208677614 hasAuthorship W3208677614A5040570899 @default.
- W3208677614 hasAuthorship W3208677614A5043046558 @default.
- W3208677614 hasAuthorship W3208677614A5060765277 @default.
- W3208677614 hasAuthorship W3208677614A5061426438 @default.
- W3208677614 hasAuthorship W3208677614A5062066010 @default.
- W3208677614 hasAuthorship W3208677614A5072498681 @default.
- W3208677614 hasAuthorship W3208677614A5073783714 @default.
- W3208677614 hasAuthorship W3208677614A5087584536 @default.
- W3208677614 hasBestOaLocation W32086776141 @default.
- W3208677614 hasConcept C105795698 @default.
- W3208677614 hasConcept C108583219 @default.
- W3208677614 hasConcept C119857082 @default.
- W3208677614 hasConcept C127413603 @default.
- W3208677614 hasConcept C139719470 @default.
- W3208677614 hasConcept C150899416 @default.
- W3208677614 hasConcept C153127940 @default.
- W3208677614 hasConcept C154945302 @default.
- W3208677614 hasConcept C162324750 @default.
- W3208677614 hasConcept C165064840 @default.
- W3208677614 hasConcept C177212765 @default.
- W3208677614 hasConcept C24345647 @default.
- W3208677614 hasConcept C2776459999 @default.
- W3208677614 hasConcept C2778348673 @default.
- W3208677614 hasConcept C33923547 @default.
- W3208677614 hasConcept C41008148 @default.
- W3208677614 hasConcept C50644808 @default.
- W3208677614 hasConcept C548081761 @default.
- W3208677614 hasConcept C76155785 @default.
- W3208677614 hasConcept C77088390 @default.
- W3208677614 hasConceptScore W3208677614C105795698 @default.