Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208679452> ?p ?o ?g. }
- W3208679452 abstract "Companies need to collect and analyze time series data to continuously monitor the behavior of software systems during operation, which can in turn be used for performance monitoring, anomaly detection or identifying problems after system crashes. However, gaining insights into common data patterns in time series is challenging, in particular, when analyzing data concerning different properties and from multiple systems. Clustering approaches have been hardly studied in the context of monitoring data, despite their possible benefits. In this paper, we present a feature-based approach to identify clusters in unlabeled infrastructure monitoring data collected from multiple independent software systems. We introduce time series properties which are grouped into feature sets and combine them with various unsupervised machine learning models to find the methods best suited for our clustering goal. We thoroughly evaluate our approach using two large-scale, industrial monitoring datasets. Finally, we apply one of the top-ranked methods to thousands of time series from hundreds of software systems, thereby showing the usefulness of our approach." @default.
- W3208679452 created "2021-11-08" @default.
- W3208679452 creator A5011678778 @default.
- W3208679452 creator A5015021374 @default.
- W3208679452 creator A5017108223 @default.
- W3208679452 creator A5038819259 @default.
- W3208679452 creator A5072476224 @default.
- W3208679452 creator A5088875278 @default.
- W3208679452 date "2021-09-01" @default.
- W3208679452 modified "2023-09-23" @default.
- W3208679452 title "An Approach for Ranking Feature-based Clustering Methods and its Application in Multi-System Infrastructure Monitoring" @default.
- W3208679452 cites W1495775210 @default.
- W3208679452 cites W1601546968 @default.
- W3208679452 cites W1653102724 @default.
- W3208679452 cites W1894414046 @default.
- W3208679452 cites W1963886895 @default.
- W3208679452 cites W1974475152 @default.
- W3208679452 cites W1976518930 @default.
- W3208679452 cites W1989280111 @default.
- W3208679452 cites W1992179129 @default.
- W3208679452 cites W2009082127 @default.
- W3208679452 cites W2016381774 @default.
- W3208679452 cites W2030709318 @default.
- W3208679452 cites W2093606067 @default.
- W3208679452 cites W2095897464 @default.
- W3208679452 cites W2101234009 @default.
- W3208679452 cites W2127218421 @default.
- W3208679452 cites W2134179844 @default.
- W3208679452 cites W2136510202 @default.
- W3208679452 cites W2143039774 @default.
- W3208679452 cites W2182419557 @default.
- W3208679452 cites W2182647267 @default.
- W3208679452 cites W2229908198 @default.
- W3208679452 cites W2257437519 @default.
- W3208679452 cites W2278984902 @default.
- W3208679452 cites W2307033123 @default.
- W3208679452 cites W2312770853 @default.
- W3208679452 cites W2322013807 @default.
- W3208679452 cites W2497783665 @default.
- W3208679452 cites W2531749512 @default.
- W3208679452 cites W2729498533 @default.
- W3208679452 cites W2765753848 @default.
- W3208679452 cites W2775606259 @default.
- W3208679452 cites W2782674619 @default.
- W3208679452 cites W2802314367 @default.
- W3208679452 cites W2904780924 @default.
- W3208679452 cites W2911964244 @default.
- W3208679452 cites W2912174032 @default.
- W3208679452 cites W2912681400 @default.
- W3208679452 cites W2946836894 @default.
- W3208679452 cites W2948517885 @default.
- W3208679452 cites W2966284335 @default.
- W3208679452 cites W2967988901 @default.
- W3208679452 cites W2968594342 @default.
- W3208679452 cites W2970658101 @default.
- W3208679452 cites W3008869798 @default.
- W3208679452 cites W3021003921 @default.
- W3208679452 cites W3100974552 @default.
- W3208679452 cites W3103145119 @default.
- W3208679452 cites W1857789879 @default.
- W3208679452 doi "https://doi.org/10.1109/seaa53835.2021.00031" @default.
- W3208679452 hasPublicationYear "2021" @default.
- W3208679452 type Work @default.
- W3208679452 sameAs 3208679452 @default.
- W3208679452 citedByCount "0" @default.
- W3208679452 crossrefType "proceedings-article" @default.
- W3208679452 hasAuthorship W3208679452A5011678778 @default.
- W3208679452 hasAuthorship W3208679452A5015021374 @default.
- W3208679452 hasAuthorship W3208679452A5017108223 @default.
- W3208679452 hasAuthorship W3208679452A5038819259 @default.
- W3208679452 hasAuthorship W3208679452A5072476224 @default.
- W3208679452 hasAuthorship W3208679452A5088875278 @default.
- W3208679452 hasConcept C119857082 @default.
- W3208679452 hasConcept C124101348 @default.
- W3208679452 hasConcept C138885662 @default.
- W3208679452 hasConcept C151406439 @default.
- W3208679452 hasConcept C151730666 @default.
- W3208679452 hasConcept C189430467 @default.
- W3208679452 hasConcept C199360897 @default.
- W3208679452 hasConcept C2776401178 @default.
- W3208679452 hasConcept C2777904410 @default.
- W3208679452 hasConcept C2779343474 @default.
- W3208679452 hasConcept C41008148 @default.
- W3208679452 hasConcept C41895202 @default.
- W3208679452 hasConcept C73555534 @default.
- W3208679452 hasConcept C739882 @default.
- W3208679452 hasConcept C86803240 @default.
- W3208679452 hasConceptScore W3208679452C119857082 @default.
- W3208679452 hasConceptScore W3208679452C124101348 @default.
- W3208679452 hasConceptScore W3208679452C138885662 @default.
- W3208679452 hasConceptScore W3208679452C151406439 @default.
- W3208679452 hasConceptScore W3208679452C151730666 @default.
- W3208679452 hasConceptScore W3208679452C189430467 @default.
- W3208679452 hasConceptScore W3208679452C199360897 @default.
- W3208679452 hasConceptScore W3208679452C2776401178 @default.
- W3208679452 hasConceptScore W3208679452C2777904410 @default.
- W3208679452 hasConceptScore W3208679452C2779343474 @default.
- W3208679452 hasConceptScore W3208679452C41008148 @default.
- W3208679452 hasConceptScore W3208679452C41895202 @default.
- W3208679452 hasConceptScore W3208679452C73555534 @default.