Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208702196> ?p ?o ?g. }
- W3208702196 endingPage "61" @default.
- W3208702196 startingPage "51" @default.
- W3208702196 abstract "An indication for surgical therapy includes balancing benefits against risk, which remains a key task in all surgical disciplines. Decisions are oftentimes based on clinical experience while guidelines lack evidence-based background. Various medical fields capitalized the application of machine learning (ML), and preliminary research suggests promising implications in surgeons' workflow. Hence, we evaluated ML's contemporary and possible future role in clinical decision-making (CDM) focusing on abdominal surgery.Using the PICO framework, relevant keywords and research questions were identified. Following the PRISMA guidelines, a systemic search strategy in the PubMed database was conducted. Results were filtered by distinct criteria and selected articles were manually full text reviewed.Literature review revealed 4,396 articles, of which 47 matched the search criteria. The mean number of patients included was 55,843. A total of eight distinct ML techniques were evaluated whereas AUROC was applied by most authors for comparing ML predictions vs. conventional CDM routines. Most authors (N = 30/47, 63.8%) stated ML's superiority in the prediction of benefits and risks of surgery. The identification of highly relevant parameters to be integrated into algorithms allowing a more precise prognosis was emphasized as the main advantage of ML in CDM.A potential value of ML for surgical decision-making was demonstrated in several scientific articles. However, the low number of publications with only few collaborative studies between surgeons and computer scientists underpins the early phase of this highly promising field. Interdisciplinary research initiatives combining existing clinical datasets and emerging techniques of data processing may likely improve CDM in abdominal surgery in the future." @default.
- W3208702196 created "2021-11-08" @default.
- W3208702196 creator A5031620559 @default.
- W3208702196 creator A5044850360 @default.
- W3208702196 creator A5052261324 @default.
- W3208702196 creator A5067705150 @default.
- W3208702196 creator A5091728414 @default.
- W3208702196 date "2021-10-29" @default.
- W3208702196 modified "2023-09-27" @default.
- W3208702196 title "Machine learning to guide clinical decision-making in abdominal surgery—a systematic literature review" @default.
- W3208702196 cites W1754547747 @default.
- W3208702196 cites W1931354685 @default.
- W3208702196 cites W1963710671 @default.
- W3208702196 cites W1970028800 @default.
- W3208702196 cites W2013028137 @default.
- W3208702196 cites W2021093304 @default.
- W3208702196 cites W2048301249 @default.
- W3208702196 cites W2057902044 @default.
- W3208702196 cites W2064955249 @default.
- W3208702196 cites W2068613509 @default.
- W3208702196 cites W2082302018 @default.
- W3208702196 cites W2083743013 @default.
- W3208702196 cites W2087141873 @default.
- W3208702196 cites W2090993382 @default.
- W3208702196 cites W2111722073 @default.
- W3208702196 cites W2117244422 @default.
- W3208702196 cites W2128476844 @default.
- W3208702196 cites W2138982156 @default.
- W3208702196 cites W2156098321 @default.
- W3208702196 cites W2177215608 @default.
- W3208702196 cites W2302502576 @default.
- W3208702196 cites W2336227533 @default.
- W3208702196 cites W2397616787 @default.
- W3208702196 cites W246286872 @default.
- W3208702196 cites W2529488695 @default.
- W3208702196 cites W2560554401 @default.
- W3208702196 cites W2580456502 @default.
- W3208702196 cites W2594917386 @default.
- W3208702196 cites W2606410631 @default.
- W3208702196 cites W2738765305 @default.
- W3208702196 cites W2762658547 @default.
- W3208702196 cites W2772723798 @default.
- W3208702196 cites W2776737272 @default.
- W3208702196 cites W2793121975 @default.
- W3208702196 cites W2793279627 @default.
- W3208702196 cites W2797775685 @default.
- W3208702196 cites W2800777678 @default.
- W3208702196 cites W2885005023 @default.
- W3208702196 cites W2887897599 @default.
- W3208702196 cites W2888528836 @default.
- W3208702196 cites W2894319790 @default.
- W3208702196 cites W2901997892 @default.
- W3208702196 cites W2908201961 @default.
- W3208702196 cites W2913997948 @default.
- W3208702196 cites W2934399013 @default.
- W3208702196 cites W2938932803 @default.
- W3208702196 cites W2944735739 @default.
- W3208702196 cites W2945284524 @default.
- W3208702196 cites W2946061185 @default.
- W3208702196 cites W2962649098 @default.
- W3208702196 cites W2966316153 @default.
- W3208702196 cites W2976003057 @default.
- W3208702196 cites W2977181577 @default.
- W3208702196 cites W2979644603 @default.
- W3208702196 cites W2980769368 @default.
- W3208702196 cites W2982702616 @default.
- W3208702196 cites W2983858740 @default.
- W3208702196 cites W2983942472 @default.
- W3208702196 cites W2989361460 @default.
- W3208702196 cites W3000027429 @default.
- W3208702196 cites W3003456277 @default.
- W3208702196 cites W3005742470 @default.
- W3208702196 cites W3013919793 @default.
- W3208702196 cites W3021020127 @default.
- W3208702196 cites W3035163803 @default.
- W3208702196 cites W3109762849 @default.
- W3208702196 cites W3133332315 @default.
- W3208702196 cites W3206549760 @default.
- W3208702196 cites W4294215472 @default.
- W3208702196 doi "https://doi.org/10.1007/s00423-021-02348-w" @default.
- W3208702196 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34716472" @default.
- W3208702196 hasPublicationYear "2021" @default.
- W3208702196 type Work @default.
- W3208702196 sameAs 3208702196 @default.
- W3208702196 citedByCount "8" @default.
- W3208702196 countsByYear W32087021962021 @default.
- W3208702196 countsByYear W32087021962022 @default.
- W3208702196 countsByYear W32087021962023 @default.
- W3208702196 crossrefType "journal-article" @default.
- W3208702196 hasAuthorship W3208702196A5031620559 @default.
- W3208702196 hasAuthorship W3208702196A5044850360 @default.
- W3208702196 hasAuthorship W3208702196A5052261324 @default.
- W3208702196 hasAuthorship W3208702196A5067705150 @default.
- W3208702196 hasAuthorship W3208702196A5091728414 @default.
- W3208702196 hasBestOaLocation W32087021961 @default.
- W3208702196 hasConcept C116834253 @default.
- W3208702196 hasConcept C127413603 @default.
- W3208702196 hasConcept C177212765 @default.