Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208713911> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W3208713911 abstract "Recent spectral graph sparsification techniques have shown promising performance in accelerating many numerical and graph algorithms, such as iterative methods for solving large sparse matrices, spectral partitioning of undirected graphs, vectorless verification of power/thermal grids, representation learning of large graphs, etc. However, prior spectral graph sparsification methods rely on fast Laplacian matrix solvers that are usually challenging to implement in practice. This work, for the first time, introduces a solver-free approach (SF-GRASS) for spectral graph sparsification by leveraging emerging spectral graph coarsening and graph signal processing (GSP) techniques. We introduce a local spectral embedding scheme for efficiently identifying spectrally-critical edges that are key to preserving graph spectral properties, such as the first few Laplacian eigenvalues and eigenvectors. Since the key kernel functions in SF-GRASS can be efficiently implemented using sparse-matrix-vector-multiplications (SpMVs), the proposed spectral approach is simple to implement and inherently parallel friendly. Our extensive experimental results show that the proposed method can produce a hierarchy of high-quality spectral sparsifiers in nearly-linear time for a variety of real-world, large-scale graphs and circuit networks when compared with prior state-of-the-art spectral methods." @default.
- W3208713911 created "2021-11-08" @default.
- W3208713911 creator A5008259799 @default.
- W3208713911 creator A5011566804 @default.
- W3208713911 creator A5060994033 @default.
- W3208713911 date "2020-11-02" @default.
- W3208713911 modified "2023-10-18" @default.
- W3208713911 title "SF-GRASS" @default.
- W3208713911 cites W1543491698 @default.
- W3208713911 cites W1916091028 @default.
- W3208713911 cites W1974239096 @default.
- W3208713911 cites W2070448527 @default.
- W3208713911 cites W2076796919 @default.
- W3208713911 cites W2101491865 @default.
- W3208713911 cites W2129575457 @default.
- W3208713911 cites W2278710066 @default.
- W3208713911 cites W2594480752 @default.
- W3208713911 cites W4230823852 @default.
- W3208713911 doi "https://doi.org/10.1145/3400302.3415629" @default.
- W3208713911 hasPublicationYear "2020" @default.
- W3208713911 type Work @default.
- W3208713911 sameAs 3208713911 @default.
- W3208713911 citedByCount "0" @default.
- W3208713911 crossrefType "proceedings-article" @default.
- W3208713911 hasAuthorship W3208713911A5008259799 @default.
- W3208713911 hasAuthorship W3208713911A5011566804 @default.
- W3208713911 hasAuthorship W3208713911A5060994033 @default.
- W3208713911 hasConcept C39432304 @default.
- W3208713911 hasConcept C41008148 @default.
- W3208713911 hasConceptScore W3208713911C39432304 @default.
- W3208713911 hasConceptScore W3208713911C41008148 @default.
- W3208713911 hasFunder F4320337387 @default.
- W3208713911 hasLocation W32087139111 @default.
- W3208713911 hasOpenAccess W3208713911 @default.
- W3208713911 hasPrimaryLocation W32087139111 @default.
- W3208713911 hasRelatedWork W2093578348 @default.
- W3208713911 hasRelatedWork W2130043461 @default.
- W3208713911 hasRelatedWork W2350741829 @default.
- W3208713911 hasRelatedWork W2358668433 @default.
- W3208713911 hasRelatedWork W2376932109 @default.
- W3208713911 hasRelatedWork W2382290278 @default.
- W3208713911 hasRelatedWork W2390279801 @default.
- W3208713911 hasRelatedWork W2748952813 @default.
- W3208713911 hasRelatedWork W2899084033 @default.
- W3208713911 hasRelatedWork W3004735627 @default.
- W3208713911 isParatext "false" @default.
- W3208713911 isRetracted "false" @default.
- W3208713911 magId "3208713911" @default.
- W3208713911 workType "article" @default.