Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208754611> ?p ?o ?g. }
- W3208754611 endingPage "442" @default.
- W3208754611 startingPage "429" @default.
- W3208754611 abstract "The sustainable growth of cities created the need for better informed decisions based on information and communication technologies to sense the city and quantify its pulse. An important part of this concept of “smart cities” is the characterization of vehicular traffic flows and the prediction of urban mobility. Although there are several sensors that are able to infer the traffic flows in the city, road-mounted traffic counters can measure the number of vehicles in different parts of the roads. However, they are not usually used in traffic city prediction; therefore, we can provide a first step for the usefulness of these sensors in the city management. In this paper we study both statistical and deep learning methods to describe, understand and predict the city traffic profile. Although traffic presents seasonal patterns, in occasional situations these may not be verified. Considering the proposed approaches, statistical algorithms, such as SARIMA, and neural network algorithms, such as FFNN, LSTM, CNN and hybrid LSTM-CNN, we found that statistical models are significantly good to predict the traffic counters data in the short-term, even when anomalous traffic conditions are observed. For long-term predictions, CNNs have shown to be efficient and robust. Long-term and short-term forecasting, in the context of traffic flow prediction, may be a strategy to accomplish different goals. Long-term forecasting can be chosen for traffic flow description, and short-term forecasting can be used to identify and mitigate anomalies." @default.
- W3208754611 created "2021-11-08" @default.
- W3208754611 creator A5008921007 @default.
- W3208754611 creator A5059149681 @default.
- W3208754611 creator A5062181222 @default.
- W3208754611 creator A5088244706 @default.
- W3208754611 date "2022-03-01" @default.
- W3208754611 modified "2023-10-17" @default.
- W3208754611 title "Vehicular traffic flow prediction using deployed traffic counters in a city" @default.
- W3208754611 cites W1967444754 @default.
- W3208754611 cites W1973943669 @default.
- W3208754611 cites W2004353783 @default.
- W3208754611 cites W2090192376 @default.
- W3208754611 cites W2109606373 @default.
- W3208754611 cites W2119046642 @default.
- W3208754611 cites W2136848157 @default.
- W3208754611 cites W2782672556 @default.
- W3208754611 cites W2910892140 @default.
- W3208754611 cites W2964955272 @default.
- W3208754611 doi "https://doi.org/10.1016/j.future.2021.10.022" @default.
- W3208754611 hasPublicationYear "2022" @default.
- W3208754611 type Work @default.
- W3208754611 sameAs 3208754611 @default.
- W3208754611 citedByCount "14" @default.
- W3208754611 countsByYear W32087546112022 @default.
- W3208754611 countsByYear W32087546112023 @default.
- W3208754611 crossrefType "journal-article" @default.
- W3208754611 hasAuthorship W3208754611A5008921007 @default.
- W3208754611 hasAuthorship W3208754611A5059149681 @default.
- W3208754611 hasAuthorship W3208754611A5062181222 @default.
- W3208754611 hasAuthorship W3208754611A5088244706 @default.
- W3208754611 hasConcept C108583219 @default.
- W3208754611 hasConcept C121332964 @default.
- W3208754611 hasConcept C124101348 @default.
- W3208754611 hasConcept C127413603 @default.
- W3208754611 hasConcept C151730666 @default.
- W3208754611 hasConcept C154945302 @default.
- W3208754611 hasConcept C207512268 @default.
- W3208754611 hasConcept C22212356 @default.
- W3208754611 hasConcept C25492975 @default.
- W3208754611 hasConcept C2777103469 @default.
- W3208754611 hasConcept C2779343474 @default.
- W3208754611 hasConcept C2779888511 @default.
- W3208754611 hasConcept C2992757693 @default.
- W3208754611 hasConcept C31258907 @default.
- W3208754611 hasConcept C38652104 @default.
- W3208754611 hasConcept C39432304 @default.
- W3208754611 hasConcept C41008148 @default.
- W3208754611 hasConcept C47796450 @default.
- W3208754611 hasConcept C50644808 @default.
- W3208754611 hasConcept C61797465 @default.
- W3208754611 hasConcept C62520636 @default.
- W3208754611 hasConcept C64093975 @default.
- W3208754611 hasConcept C79403827 @default.
- W3208754611 hasConcept C81860439 @default.
- W3208754611 hasConcept C86803240 @default.
- W3208754611 hasConcept C91375879 @default.
- W3208754611 hasConceptScore W3208754611C108583219 @default.
- W3208754611 hasConceptScore W3208754611C121332964 @default.
- W3208754611 hasConceptScore W3208754611C124101348 @default.
- W3208754611 hasConceptScore W3208754611C127413603 @default.
- W3208754611 hasConceptScore W3208754611C151730666 @default.
- W3208754611 hasConceptScore W3208754611C154945302 @default.
- W3208754611 hasConceptScore W3208754611C207512268 @default.
- W3208754611 hasConceptScore W3208754611C22212356 @default.
- W3208754611 hasConceptScore W3208754611C25492975 @default.
- W3208754611 hasConceptScore W3208754611C2777103469 @default.
- W3208754611 hasConceptScore W3208754611C2779343474 @default.
- W3208754611 hasConceptScore W3208754611C2779888511 @default.
- W3208754611 hasConceptScore W3208754611C2992757693 @default.
- W3208754611 hasConceptScore W3208754611C31258907 @default.
- W3208754611 hasConceptScore W3208754611C38652104 @default.
- W3208754611 hasConceptScore W3208754611C39432304 @default.
- W3208754611 hasConceptScore W3208754611C41008148 @default.
- W3208754611 hasConceptScore W3208754611C47796450 @default.
- W3208754611 hasConceptScore W3208754611C50644808 @default.
- W3208754611 hasConceptScore W3208754611C61797465 @default.
- W3208754611 hasConceptScore W3208754611C62520636 @default.
- W3208754611 hasConceptScore W3208754611C64093975 @default.
- W3208754611 hasConceptScore W3208754611C79403827 @default.
- W3208754611 hasConceptScore W3208754611C81860439 @default.
- W3208754611 hasConceptScore W3208754611C86803240 @default.
- W3208754611 hasConceptScore W3208754611C91375879 @default.
- W3208754611 hasLocation W32087546111 @default.
- W3208754611 hasOpenAccess W3208754611 @default.
- W3208754611 hasPrimaryLocation W32087546111 @default.
- W3208754611 hasRelatedWork W1604086790 @default.
- W3208754611 hasRelatedWork W3138982017 @default.
- W3208754611 hasRelatedWork W3199849898 @default.
- W3208754611 hasRelatedWork W3208754611 @default.
- W3208754611 hasRelatedWork W4200245346 @default.
- W3208754611 hasRelatedWork W4206914024 @default.
- W3208754611 hasRelatedWork W4212915101 @default.
- W3208754611 hasRelatedWork W4223992687 @default.
- W3208754611 hasRelatedWork W4292615378 @default.
- W3208754611 hasRelatedWork W4308710811 @default.
- W3208754611 hasVolume "128" @default.
- W3208754611 isParatext "false" @default.