Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208771569> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3208771569 abstract "Purpose. Imaging studies about the relevance of muscles in spinal disorders, and sarcopenia in general, require the segmentation of the muscles in the images which is very labour-intensive if performed manually and poses a practical limit to the number of investigated subjects. This study aimed at developing a deep learning-based tool able to fully automatically perform an accurate segmentation of the lumbar muscles in axial MRI scans, and at validating the new tool on an external dataset. Methods. A set of 60 axial MRI images of the lumbar spine was retrospectively collected from a clinical database. Psoas major, quadratus lumborum, erector spinae, and multifidus were manually segmented in all available slices. The dataset was used to train and validate a deep neural network able to segment muscles automatically. Subsequently, the network was externally validated on images purposely acquired from 22 healthy volunteers. Results. The Jaccard index for the individual muscles calculated for the 22 subjects of the external validation set ranged between 0.862 and 0.935, demonstrating a generally excellent performance of the network. Cross-sectional area and fat fraction of the muscles were in agreement with published data. Conclusions. The externally validated deep neural network was able to perform the segmentation of the paravertebral muscles in axial MRI scans in an accurate and fully automated manner, and is therefore a suitable tool to perform large-scale studies in the field of spinal disorders and sarcopenia, overcoming the limitations of non-automated methods." @default.
- W3208771569 created "2021-11-08" @default.
- W3208771569 creator A5003674506 @default.
- W3208771569 creator A5009916572 @default.
- W3208771569 creator A5042419964 @default.
- W3208771569 creator A5074613807 @default.
- W3208771569 creator A5077316821 @default.
- W3208771569 creator A5079336039 @default.
- W3208771569 date "2021-10-26" @default.
- W3208771569 modified "2023-10-11" @default.
- W3208771569 title "An externally validated deep learning model for the accurate segmentation of the lumbar paravertebral muscles" @default.
- W3208771569 cites W1590590744 @default.
- W3208771569 cites W1901129140 @default.
- W3208771569 cites W1952030342 @default.
- W3208771569 cites W2084688723 @default.
- W3208771569 cites W2116294028 @default.
- W3208771569 cites W2123402141 @default.
- W3208771569 cites W2128564886 @default.
- W3208771569 cites W2344822791 @default.
- W3208771569 cites W2407936965 @default.
- W3208771569 cites W2577335098 @default.
- W3208771569 cites W2597185178 @default.
- W3208771569 cites W2754494476 @default.
- W3208771569 cites W2888938880 @default.
- W3208771569 cites W2904762218 @default.
- W3208771569 cites W2951476032 @default.
- W3208771569 cites W2952750045 @default.
- W3208771569 cites W2980315759 @default.
- W3208771569 cites W2981207961 @default.
- W3208771569 cites W2989893386 @default.
- W3208771569 cites W2994992668 @default.
- W3208771569 cites W2995684497 @default.
- W3208771569 cites W3037357334 @default.
- W3208771569 cites W3107970172 @default.
- W3208771569 cites W3128188367 @default.
- W3208771569 cites W3132087270 @default.
- W3208771569 doi "https://doi.org/10.1101/2021.10.25.21265466" @default.
- W3208771569 hasPublicationYear "2021" @default.
- W3208771569 type Work @default.
- W3208771569 sameAs 3208771569 @default.
- W3208771569 citedByCount "1" @default.
- W3208771569 countsByYear W32087715692023 @default.
- W3208771569 crossrefType "posted-content" @default.
- W3208771569 hasAuthorship W3208771569A5003674506 @default.
- W3208771569 hasAuthorship W3208771569A5009916572 @default.
- W3208771569 hasAuthorship W3208771569A5042419964 @default.
- W3208771569 hasAuthorship W3208771569A5074613807 @default.
- W3208771569 hasAuthorship W3208771569A5077316821 @default.
- W3208771569 hasAuthorship W3208771569A5079336039 @default.
- W3208771569 hasBestOaLocation W32087715691 @default.
- W3208771569 hasConcept C105702510 @default.
- W3208771569 hasConcept C108583219 @default.
- W3208771569 hasConcept C153180895 @default.
- W3208771569 hasConcept C154945302 @default.
- W3208771569 hasConcept C203519979 @default.
- W3208771569 hasConcept C2779151272 @default.
- W3208771569 hasConcept C41008148 @default.
- W3208771569 hasConcept C44575665 @default.
- W3208771569 hasConcept C50644808 @default.
- W3208771569 hasConcept C58489278 @default.
- W3208771569 hasConcept C71924100 @default.
- W3208771569 hasConcept C89600930 @default.
- W3208771569 hasConceptScore W3208771569C105702510 @default.
- W3208771569 hasConceptScore W3208771569C108583219 @default.
- W3208771569 hasConceptScore W3208771569C153180895 @default.
- W3208771569 hasConceptScore W3208771569C154945302 @default.
- W3208771569 hasConceptScore W3208771569C203519979 @default.
- W3208771569 hasConceptScore W3208771569C2779151272 @default.
- W3208771569 hasConceptScore W3208771569C41008148 @default.
- W3208771569 hasConceptScore W3208771569C44575665 @default.
- W3208771569 hasConceptScore W3208771569C50644808 @default.
- W3208771569 hasConceptScore W3208771569C58489278 @default.
- W3208771569 hasConceptScore W3208771569C71924100 @default.
- W3208771569 hasConceptScore W3208771569C89600930 @default.
- W3208771569 hasLocation W32087715691 @default.
- W3208771569 hasOpenAccess W3208771569 @default.
- W3208771569 hasPrimaryLocation W32087715691 @default.
- W3208771569 hasRelatedWork W1850987 @default.
- W3208771569 hasRelatedWork W2233117 @default.
- W3208771569 hasRelatedWork W2366400 @default.
- W3208771569 hasRelatedWork W2526871 @default.
- W3208771569 hasRelatedWork W274842 @default.
- W3208771569 hasRelatedWork W2893967 @default.
- W3208771569 hasRelatedWork W3279675 @default.
- W3208771569 hasRelatedWork W4434041 @default.
- W3208771569 hasRelatedWork W4608154 @default.
- W3208771569 hasRelatedWork W4771408 @default.
- W3208771569 isParatext "false" @default.
- W3208771569 isRetracted "false" @default.
- W3208771569 magId "3208771569" @default.
- W3208771569 workType "article" @default.