Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208781631> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3208781631 abstract "Representation of dynamic textures (DTs), well-known as a sequence of moving textures, is a challenge in video analysis for various computer vision applications. It is partly due to disorientation of motions, the negative impacts of the well-known issues on capturing turbulent features: noise, changes of environment, illumination, similarity transformations, etc. In this work, we introduce significant solutions in order to deal with above problems. Accordingly, three streams of those are proposed for encoding DTs: i) based on dense trajectories extracted from a given video; ii) based on robust responses extracted by moment models; iii) based on filtered outcomes which are computed by variants of Gaussian-filtering kernels. In parallel, we also propose several discriminative descriptors to capture spatio-temporal features for above DT encodings. For DT representation based on dense trajectories, we firstly extract dense trajectories from a given video. Motion points along the paths of dense trajectories are then encoded by our xLVP operator, an important extension of Local Vector Patterns (LVP) in a completed encoding context, in order to capture directional dense-trajectory-based features for DT representation.For DT description based on moment models, motivated by the moment-image model, we propose a novel model of moment volumes based on statistical information of spherical supporting regions centered at a voxel. Two these models are then taken into account video analysis to point out moment-based images/volumes. In order to encode the moment-based images, we address CLSP operator, a variant of completed local binary patterns (CLBP). In the meanwhile, our xLDP, an important extension of Local Derivative Patterns (LDP) in a completed encoding context, is introduced to capture spatio-temporal features of the moment-volume-based outcomes. For DT representation based on the Gaussian-based filterings, we will investigate many kinds of filterings as pre-processing analysis of a video to point out its filtered outcomes. After that, these outputs are encoded by discriminative operators to structure DT descriptors correspondingly. More concretely, we exploit the Gaussian-based kernel and variants of high-order Gaussian gradients for the filtering analysis. Particularly, we introduce a novel filtering kernel (DoDG) in consideration of the difference of Gaussian gradients, which allows to point out robust DoDG-filtered components to construct prominent DoDG-based descriptors in small dimension. In parallel to the Gaussian-based filterings, some novel operators will be introduced to meet different contexts of the local DT encoding: CAIP, an adaptation of CLBP to fix the close-to-zero problem caused by separately bipolar features; LRP, based on a concept of a square cube of local neighbors sampled at a center voxel; CHILOP, a generalized formulation of CLBP to adequately investigate local relationships of hierarchical supporting regions. Experiments for DT recognition have validated that our proposals significantly perform in comparison with state of the art. Some of which have performance being very close to deep-learning approaches, expected as one of appreciated solutions for mobile applications due to their simplicity in computation and their DT descriptors in a small number of bins." @default.
- W3208781631 created "2021-11-08" @default.
- W3208781631 creator A5070408153 @default.
- W3208781631 date "2020-11-27" @default.
- W3208781631 modified "2023-09-23" @default.
- W3208781631 title "Efficient Representations of Dynamic Textures" @default.
- W3208781631 hasPublicationYear "2020" @default.
- W3208781631 type Work @default.
- W3208781631 sameAs 3208781631 @default.
- W3208781631 citedByCount "0" @default.
- W3208781631 crossrefType "dissertation" @default.
- W3208781631 hasAuthorship W3208781631A5070408153 @default.
- W3208781631 hasConcept C104317684 @default.
- W3208781631 hasConcept C121332964 @default.
- W3208781631 hasConcept C125411270 @default.
- W3208781631 hasConcept C151730666 @default.
- W3208781631 hasConcept C153180895 @default.
- W3208781631 hasConcept C154945302 @default.
- W3208781631 hasConcept C163716315 @default.
- W3208781631 hasConcept C17744445 @default.
- W3208781631 hasConcept C179254644 @default.
- W3208781631 hasConcept C185592680 @default.
- W3208781631 hasConcept C199539241 @default.
- W3208781631 hasConcept C2776359362 @default.
- W3208781631 hasConcept C2779343474 @default.
- W3208781631 hasConcept C31972630 @default.
- W3208781631 hasConcept C41008148 @default.
- W3208781631 hasConcept C55493867 @default.
- W3208781631 hasConcept C62520636 @default.
- W3208781631 hasConcept C66746571 @default.
- W3208781631 hasConcept C74650414 @default.
- W3208781631 hasConcept C86803240 @default.
- W3208781631 hasConcept C94625758 @default.
- W3208781631 hasConcept C97931131 @default.
- W3208781631 hasConceptScore W3208781631C104317684 @default.
- W3208781631 hasConceptScore W3208781631C121332964 @default.
- W3208781631 hasConceptScore W3208781631C125411270 @default.
- W3208781631 hasConceptScore W3208781631C151730666 @default.
- W3208781631 hasConceptScore W3208781631C153180895 @default.
- W3208781631 hasConceptScore W3208781631C154945302 @default.
- W3208781631 hasConceptScore W3208781631C163716315 @default.
- W3208781631 hasConceptScore W3208781631C17744445 @default.
- W3208781631 hasConceptScore W3208781631C179254644 @default.
- W3208781631 hasConceptScore W3208781631C185592680 @default.
- W3208781631 hasConceptScore W3208781631C199539241 @default.
- W3208781631 hasConceptScore W3208781631C2776359362 @default.
- W3208781631 hasConceptScore W3208781631C2779343474 @default.
- W3208781631 hasConceptScore W3208781631C31972630 @default.
- W3208781631 hasConceptScore W3208781631C41008148 @default.
- W3208781631 hasConceptScore W3208781631C55493867 @default.
- W3208781631 hasConceptScore W3208781631C62520636 @default.
- W3208781631 hasConceptScore W3208781631C66746571 @default.
- W3208781631 hasConceptScore W3208781631C74650414 @default.
- W3208781631 hasConceptScore W3208781631C86803240 @default.
- W3208781631 hasConceptScore W3208781631C94625758 @default.
- W3208781631 hasConceptScore W3208781631C97931131 @default.
- W3208781631 hasLocation W32087816311 @default.
- W3208781631 hasOpenAccess W3208781631 @default.
- W3208781631 hasPrimaryLocation W32087816311 @default.
- W3208781631 hasRelatedWork W1484127623 @default.
- W3208781631 hasRelatedWork W1531614703 @default.
- W3208781631 hasRelatedWork W1741971726 @default.
- W3208781631 hasRelatedWork W185495346 @default.
- W3208781631 hasRelatedWork W1970453205 @default.
- W3208781631 hasRelatedWork W2006766164 @default.
- W3208781631 hasRelatedWork W2239773156 @default.
- W3208781631 hasRelatedWork W2240972402 @default.
- W3208781631 hasRelatedWork W2265818674 @default.
- W3208781631 hasRelatedWork W2278596985 @default.
- W3208781631 hasRelatedWork W2551439276 @default.
- W3208781631 hasRelatedWork W2578262202 @default.
- W3208781631 hasRelatedWork W2598056902 @default.
- W3208781631 hasRelatedWork W2754444390 @default.
- W3208781631 hasRelatedWork W2778563281 @default.
- W3208781631 hasRelatedWork W2982524430 @default.
- W3208781631 hasRelatedWork W2994261756 @default.
- W3208781631 hasRelatedWork W3030816395 @default.
- W3208781631 hasRelatedWork W3194776486 @default.
- W3208781631 hasRelatedWork W2184869131 @default.
- W3208781631 isParatext "false" @default.
- W3208781631 isRetracted "false" @default.
- W3208781631 magId "3208781631" @default.
- W3208781631 workType "dissertation" @default.