Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208786670> ?p ?o ?g. }
- W3208786670 endingPage "72" @default.
- W3208786670 startingPage "72" @default.
- W3208786670 abstract "We study the stochastic Kardar-Parisi-Zhang equation for kinetic roughening where the time-independent (columnar or spatially quenched) Gaussian random noise $f(t,{bf x})$ is specified by the pair correlation function $langle f(t,{bf x})f(t',{bf x'}) rangle propto delta^{(d)} ({bf x-x'})$, $d$ being the dimension of space. The field-theoretic renormalization group analysis shows that the effect of turbulent motion of the environment (modelled by the coupling with the velocity field described by the Kazantsev-Kraichnan statistical ensemble for an incompressible fluid) gives rise to a new nonlinear term, quadratic in the velocity field. It turns out that this induced nonlinearity strongly affects the scaling behaviour in several universality classes (types of long-time, large-scale asymptotic regimes) even when the turbulent advection appears irrelevant in itself. Practical calculation of the critical exponents (that determine the universality classes) is performed to the first order of the double expansion in $varepsilon=4-d$ and the velocity exponent $xi$ (one-loop approximation). As is the case with most descendants of the Kardar-Parisi-Zhang model, some relevant fixed points of the renormalization group equations lie in forbidden zones, i.e. in those corresponding to negative kinetic coefficients or complex couplings. This persistent phenomenon in stochastic non-equilibrium models requires careful and inventive physical interpretation." @default.
- W3208786670 created "2021-11-08" @default.
- W3208786670 creator A5000342321 @default.
- W3208786670 creator A5040970939 @default.
- W3208786670 creator A5074820977 @default.
- W3208786670 creator A5087122623 @default.
- W3208786670 creator A5009786632 @default.
- W3208786670 date "2022-01-26" @default.
- W3208786670 modified "2023-10-10" @default.
- W3208786670 title "Stirred Kardar-Parisi-Zhang Equation with Quenched Random Noise: Emergence of Induced Nonlinearity" @default.
- W3208786670 cites W1526257355 @default.
- W3208786670 cites W1533968431 @default.
- W3208786670 cites W1648189484 @default.
- W3208786670 cites W1964913774 @default.
- W3208786670 cites W1965558311 @default.
- W3208786670 cites W1966222042 @default.
- W3208786670 cites W1968443390 @default.
- W3208786670 cites W1969065503 @default.
- W3208786670 cites W1969642710 @default.
- W3208786670 cites W1971381456 @default.
- W3208786670 cites W1973497115 @default.
- W3208786670 cites W1973593516 @default.
- W3208786670 cites W1975543975 @default.
- W3208786670 cites W1975632018 @default.
- W3208786670 cites W1987099156 @default.
- W3208786670 cites W1987656116 @default.
- W3208786670 cites W1991169338 @default.
- W3208786670 cites W1991212651 @default.
- W3208786670 cites W1992272836 @default.
- W3208786670 cites W1997828601 @default.
- W3208786670 cites W1999286451 @default.
- W3208786670 cites W2000648173 @default.
- W3208786670 cites W2000675878 @default.
- W3208786670 cites W2006056623 @default.
- W3208786670 cites W2011955188 @default.
- W3208786670 cites W2014657706 @default.
- W3208786670 cites W2017295255 @default.
- W3208786670 cites W2017535032 @default.
- W3208786670 cites W2025350000 @default.
- W3208786670 cites W2035516551 @default.
- W3208786670 cites W2038028690 @default.
- W3208786670 cites W2040232110 @default.
- W3208786670 cites W2042548952 @default.
- W3208786670 cites W2044931342 @default.
- W3208786670 cites W2045649013 @default.
- W3208786670 cites W2046708351 @default.
- W3208786670 cites W2050367886 @default.
- W3208786670 cites W2059070670 @default.
- W3208786670 cites W2059313919 @default.
- W3208786670 cites W2059343178 @default.
- W3208786670 cites W2059352158 @default.
- W3208786670 cites W2062772003 @default.
- W3208786670 cites W2066155728 @default.
- W3208786670 cites W2071656081 @default.
- W3208786670 cites W2074913530 @default.
- W3208786670 cites W2086358756 @default.
- W3208786670 cites W2087496472 @default.
- W3208786670 cites W2091957196 @default.
- W3208786670 cites W2093574939 @default.
- W3208786670 cites W2134901101 @default.
- W3208786670 cites W2164811916 @default.
- W3208786670 cites W2345083914 @default.
- W3208786670 cites W2542539144 @default.
- W3208786670 cites W2616221063 @default.
- W3208786670 cites W2727720441 @default.
- W3208786670 cites W2745466813 @default.
- W3208786670 cites W2748386604 @default.
- W3208786670 cites W2763555312 @default.
- W3208786670 cites W2775241190 @default.
- W3208786670 cites W2949178675 @default.
- W3208786670 cites W2955250166 @default.
- W3208786670 cites W2963868111 @default.
- W3208786670 cites W2964231682 @default.
- W3208786670 cites W2987126721 @default.
- W3208786670 cites W2990031733 @default.
- W3208786670 cites W3005851980 @default.
- W3208786670 cites W3008294924 @default.
- W3208786670 cites W3022897149 @default.
- W3208786670 cites W3028779131 @default.
- W3208786670 cites W3098297851 @default.
- W3208786670 cites W3099323986 @default.
- W3208786670 cites W3099483621 @default.
- W3208786670 cites W3100123103 @default.
- W3208786670 cites W3100811744 @default.
- W3208786670 cites W3101139785 @default.
- W3208786670 cites W3102144667 @default.
- W3208786670 cites W3104459137 @default.
- W3208786670 cites W3122478538 @default.
- W3208786670 cites W3137946901 @default.
- W3208786670 cites W3147512780 @default.
- W3208786670 cites W3176904896 @default.
- W3208786670 cites W3204511879 @default.
- W3208786670 cites W4247085592 @default.
- W3208786670 doi "https://doi.org/10.3390/universe8020072" @default.
- W3208786670 hasPublicationYear "2022" @default.
- W3208786670 type Work @default.
- W3208786670 sameAs 3208786670 @default.
- W3208786670 citedByCount "3" @default.