Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208788719> ?p ?o ?g. }
- W3208788719 endingPage "127129" @default.
- W3208788719 startingPage "127129" @default.
- W3208788719 abstract "• The main factor that affects NDVI in most areas of China is surface soil moisture (SSM), followed by temperature, while in arid areas root zone soil moisture (RZSM) and profile soil moisture (PSM) are the main influencing factors. • The climate zones of China can be roughly divided into northern, southern and northwestern inland areas, and there are transitional zones between different zones. • Deep learning can simulate NDVI well, and the Nash efficiency coefficients during training and verification periods are 0.893 and 0.833, respectively. It shows that these selected influencing factors can simulate and predict NDVI changes well. • The environmental drift areas discovered by concept drift detection are mainly in the Heilongjiang River Basin in Northeastern China, Yunnan, Sichuan, and Southern Tibet in Southwestern China, and Gansu, Qinghai and Xinjiang in Northwestern China. Normalized Difference Vegetation Index (NDVI) is an important indicator reflecting the state of regional climate and environment, which is affected by precipitation, temperature, soil water content, and so on. This study analyzed the influence of different factors on NDVI through the spearman correlation coefficient (SCC) and standard regression coefficient (SRC), carried out climate zoning in China through principal component analysis (PCA) and cluster analysis, simulated the NDVI value through deep learning algorithm, and analyzed the spatial mutation positions of different factors through concept drift detection. The research results show that the main factor that affects NDVI in most areas of China is surface soil moisture (SSM), followed by temperature, while in arid areas root zone soil moisture (RZSM) and profile soil moisture (PSM) are the main influencing factors. The climate zones of China can be roughly divided into northern, southern and northwestern inland areas, while there are transitional zones between different main zones. The deep learning algorithm can simulate the NDVI value very well, and the Nash efficiency coefficients (NSE) during training and verification periods are 0.893 and 0.833, respectively. However, the details of some areas are rough. This shows that the selected impact factors can basically determine the status of NDVI, and these impact factors can be used to predict the changes in NDVI. The environmental drift areas discovered by concept drift detection are mainly in the Heilongjiang River Basin in Northeastern China, Yunnan, Sichuan, and Southern Tibet in Southwestern China, and Gansu, Qinghai and Xinjiang in Northwestern China. This study provides an important reference for the analysis of environmental regional zoning, climate change detection and simulation." @default.
- W3208788719 created "2021-11-08" @default.
- W3208788719 creator A5014920443 @default.
- W3208788719 creator A5023051545 @default.
- W3208788719 creator A5023214008 @default.
- W3208788719 creator A5053838491 @default.
- W3208788719 creator A5057661079 @default.
- W3208788719 creator A5061018034 @default.
- W3208788719 creator A5066350606 @default.
- W3208788719 date "2021-12-01" @default.
- W3208788719 modified "2023-10-18" @default.
- W3208788719 title "Spatio-temporal distribution of NDVI and its influencing factors in China" @default.
- W3208788719 cites W1967462738 @default.
- W3208788719 cites W2003858034 @default.
- W3208788719 cites W2463179485 @default.
- W3208788719 cites W2523696074 @default.
- W3208788719 cites W2588035346 @default.
- W3208788719 cites W2736309080 @default.
- W3208788719 cites W2891322019 @default.
- W3208788719 cites W2896061162 @default.
- W3208788719 cites W2905821642 @default.
- W3208788719 cites W2908213433 @default.
- W3208788719 cites W2912686224 @default.
- W3208788719 cites W2937471735 @default.
- W3208788719 cites W2973053290 @default.
- W3208788719 cites W2974618133 @default.
- W3208788719 cites W2981068997 @default.
- W3208788719 cites W2986258525 @default.
- W3208788719 cites W2990338582 @default.
- W3208788719 cites W2991891763 @default.
- W3208788719 cites W2995146668 @default.
- W3208788719 cites W3000640804 @default.
- W3208788719 cites W3004866652 @default.
- W3208788719 cites W3005582876 @default.
- W3208788719 cites W3006089389 @default.
- W3208788719 cites W3015626418 @default.
- W3208788719 cites W3026975067 @default.
- W3208788719 cites W3027170800 @default.
- W3208788719 cites W3032597294 @default.
- W3208788719 cites W3035884367 @default.
- W3208788719 cites W3040530861 @default.
- W3208788719 cites W3044392380 @default.
- W3208788719 cites W3080988368 @default.
- W3208788719 cites W3081310503 @default.
- W3208788719 cites W3081659297 @default.
- W3208788719 cites W3081820952 @default.
- W3208788719 cites W3082547400 @default.
- W3208788719 cites W3084068316 @default.
- W3208788719 cites W3086089451 @default.
- W3208788719 cites W3089076764 @default.
- W3208788719 cites W3089521473 @default.
- W3208788719 cites W3090525840 @default.
- W3208788719 cites W3092132515 @default.
- W3208788719 cites W3093607489 @default.
- W3208788719 cites W3096591937 @default.
- W3208788719 cites W3097088508 @default.
- W3208788719 cites W3100200073 @default.
- W3208788719 cites W3103252281 @default.
- W3208788719 cites W3108827348 @default.
- W3208788719 cites W3138123344 @default.
- W3208788719 cites W3155796750 @default.
- W3208788719 cites W3168359373 @default.
- W3208788719 cites W3178761164 @default.
- W3208788719 doi "https://doi.org/10.1016/j.jhydrol.2021.127129" @default.
- W3208788719 hasPublicationYear "2021" @default.
- W3208788719 type Work @default.
- W3208788719 sameAs 3208788719 @default.
- W3208788719 citedByCount "22" @default.
- W3208788719 countsByYear W32087887192022 @default.
- W3208788719 countsByYear W32087887192023 @default.
- W3208788719 crossrefType "journal-article" @default.
- W3208788719 hasAuthorship W3208788719A5014920443 @default.
- W3208788719 hasAuthorship W3208788719A5023051545 @default.
- W3208788719 hasAuthorship W3208788719A5023214008 @default.
- W3208788719 hasAuthorship W3208788719A5053838491 @default.
- W3208788719 hasAuthorship W3208788719A5057661079 @default.
- W3208788719 hasAuthorship W3208788719A5061018034 @default.
- W3208788719 hasAuthorship W3208788719A5066350606 @default.
- W3208788719 hasBestOaLocation W32087887191 @default.
- W3208788719 hasConcept C100970517 @default.
- W3208788719 hasConcept C110121322 @default.
- W3208788719 hasConcept C111368507 @default.
- W3208788719 hasConcept C127313418 @default.
- W3208788719 hasConcept C132651083 @default.
- W3208788719 hasConcept C134306372 @default.
- W3208788719 hasConcept C1549246 @default.
- W3208788719 hasConcept C166957645 @default.
- W3208788719 hasConcept C191935318 @default.
- W3208788719 hasConcept C205649164 @default.
- W3208788719 hasConcept C33923547 @default.
- W3208788719 hasConcept C39432304 @default.
- W3208788719 hasConceptScore W3208788719C100970517 @default.
- W3208788719 hasConceptScore W3208788719C110121322 @default.
- W3208788719 hasConceptScore W3208788719C111368507 @default.
- W3208788719 hasConceptScore W3208788719C127313418 @default.
- W3208788719 hasConceptScore W3208788719C132651083 @default.
- W3208788719 hasConceptScore W3208788719C134306372 @default.
- W3208788719 hasConceptScore W3208788719C1549246 @default.