Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208794282> ?p ?o ?g. }
- W3208794282 abstract "High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In MRI, restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3D HR image acquisition typically requests long scan time and, results in small spatial coverage and low SNR. Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR-LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales." @default.
- W3208794282 created "2021-11-08" @default.
- W3208794282 creator A5009327702 @default.
- W3208794282 creator A5015086148 @default.
- W3208794282 creator A5019017581 @default.
- W3208794282 creator A5027081164 @default.
- W3208794282 creator A5048171551 @default.
- W3208794282 creator A5058095576 @default.
- W3208794282 creator A5079702840 @default.
- W3208794282 date "2021-10-27" @default.
- W3208794282 modified "2023-10-08" @default.
- W3208794282 title "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonance Image using Implicit Neural Representation" @default.
- W3208794282 cites W1498436455 @default.
- W3208794282 cites W1566494032 @default.
- W3208794282 cites W1677182931 @default.
- W3208794282 cites W1885185971 @default.
- W3208794282 cites W2056189002 @default.
- W3208794282 cites W2103559027 @default.
- W3208794282 cites W2112024783 @default.
- W3208794282 cites W2117644767 @default.
- W3208794282 cites W2132710243 @default.
- W3208794282 cites W2133665775 @default.
- W3208794282 cites W2157466038 @default.
- W3208794282 cites W2187351272 @default.
- W3208794282 cites W2194775991 @default.
- W3208794282 cites W2214802144 @default.
- W3208794282 cites W2242218935 @default.
- W3208794282 cites W2476548250 @default.
- W3208794282 cites W2581386739 @default.
- W3208794282 cites W2607041014 @default.
- W3208794282 cites W2709402577 @default.
- W3208794282 cites W2942080485 @default.
- W3208794282 cites W2962785568 @default.
- W3208794282 cites W2962849139 @default.
- W3208794282 cites W2963372104 @default.
- W3208794282 cites W2963627347 @default.
- W3208794282 cites W2963926543 @default.
- W3208794282 cites W2964101377 @default.
- W3208794282 cites W2964297772 @default.
- W3208794282 cites W2989249732 @default.
- W3208794282 cites W3009439636 @default.
- W3208794282 cites W3020887200 @default.
- W3208794282 cites W3102018640 @default.
- W3208794282 cites W3109585842 @default.
- W3208794282 cites W3117476483 @default.
- W3208794282 cites W3174865552 @default.
- W3208794282 cites W3176327543 @default.
- W3208794282 cites W3176368002 @default.
- W3208794282 cites W3202371506 @default.
- W3208794282 cites W3203828783 @default.
- W3208794282 cites W3204297138 @default.
- W3208794282 cites W54257720 @default.
- W3208794282 doi "https://doi.org/10.48550/arxiv.2110.14476" @default.
- W3208794282 hasPublicationYear "2021" @default.
- W3208794282 type Work @default.
- W3208794282 sameAs 3208794282 @default.
- W3208794282 citedByCount "0" @default.
- W3208794282 crossrefType "posted-content" @default.
- W3208794282 hasAuthorship W3208794282A5009327702 @default.
- W3208794282 hasAuthorship W3208794282A5015086148 @default.
- W3208794282 hasAuthorship W3208794282A5019017581 @default.
- W3208794282 hasAuthorship W3208794282A5027081164 @default.
- W3208794282 hasAuthorship W3208794282A5048171551 @default.
- W3208794282 hasAuthorship W3208794282A5058095576 @default.
- W3208794282 hasAuthorship W3208794282A5079702840 @default.
- W3208794282 hasBestOaLocation W32087942821 @default.
- W3208794282 hasConcept C101738243 @default.
- W3208794282 hasConcept C106131492 @default.
- W3208794282 hasConcept C108583219 @default.
- W3208794282 hasConcept C111919701 @default.
- W3208794282 hasConcept C11413529 @default.
- W3208794282 hasConcept C115961682 @default.
- W3208794282 hasConcept C118505674 @default.
- W3208794282 hasConcept C14036430 @default.
- W3208794282 hasConcept C140779682 @default.
- W3208794282 hasConcept C153180895 @default.
- W3208794282 hasConcept C154945302 @default.
- W3208794282 hasConcept C205372480 @default.
- W3208794282 hasConcept C31972630 @default.
- W3208794282 hasConcept C41008148 @default.
- W3208794282 hasConcept C50644808 @default.
- W3208794282 hasConcept C54170458 @default.
- W3208794282 hasConcept C78458016 @default.
- W3208794282 hasConcept C81363708 @default.
- W3208794282 hasConcept C86803240 @default.
- W3208794282 hasConceptScore W3208794282C101738243 @default.
- W3208794282 hasConceptScore W3208794282C106131492 @default.
- W3208794282 hasConceptScore W3208794282C108583219 @default.
- W3208794282 hasConceptScore W3208794282C111919701 @default.
- W3208794282 hasConceptScore W3208794282C11413529 @default.
- W3208794282 hasConceptScore W3208794282C115961682 @default.
- W3208794282 hasConceptScore W3208794282C118505674 @default.
- W3208794282 hasConceptScore W3208794282C14036430 @default.
- W3208794282 hasConceptScore W3208794282C140779682 @default.
- W3208794282 hasConceptScore W3208794282C153180895 @default.
- W3208794282 hasConceptScore W3208794282C154945302 @default.
- W3208794282 hasConceptScore W3208794282C205372480 @default.
- W3208794282 hasConceptScore W3208794282C31972630 @default.
- W3208794282 hasConceptScore W3208794282C41008148 @default.
- W3208794282 hasConceptScore W3208794282C50644808 @default.