Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208803971> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W3208803971 abstract "<p>Well-logging data show that geothermal formations typically feature layered heterogeneities. This imposes a challenge in numerical simulations, in particular in the upscaling of geothermal processes. The goal of our study is to develop an approach to (1) simplify the description of heterogeneous geothermal formations and (2) provide an accurate representation of convection/dispersion processes for simulating the up-scaled system.</p><p>In geothermal processes, transverse thermal conduction causes extra spreading of the cooling front: thermal Taylor dispersion. We derive a model from an energy balance for effective thermal diffusivity, &#945;<sub>eff</sub>, to represent this phenomenon in layered media. &#945;<sub>eff</sub>, accounting for transverse heat conduction, is much greater than the longitudinal thermal diffusivity, leading to a remarkably larger effective dispersion. A ratio of times is defined for longitudinal thermal convection and transverse thermal conduction, referred to as transverse thermal-conduction number N<sub>TC</sub>. The value of N<sub>TC</sub> is an indicator of thermal equilibrium in the vertical cross-section. Both N<sub>TC</sub> and &#945;<sub>eff</sub> equations are verified by a match with numerical solutions for convection/conduction in a two-layer system. For N<sub>TC</sub> > 5, the system behaves as a single layer with thermal diffusivity &#945;<sub>eff</sub>.</p><p>When N<sub>TC</sub> > 5, a two-layer system can be combined and represented with &#945;<sub>eff</sub> and average properties of the two layers. We illustrate upscaling approach for simulation of geothermal processes in stratified formations, by grouping layers based on the condition of N<sub>TC</sub> > 5 and the &#945;<sub>eff</sub> model. Specifically, N<sub>TC</sub> is calculated for every adjacent two layers, and the paired layers with a maximum value of N<sub>TC</sub> are grouped first. This procedure repeats on the grouped system until no adjacent layers meet the criterion N<sub>TC</sub> > 5. The upscaled layer properties of the grouped system are used as new inputs in the numerical simulations. The effectiveness of the upscaling approach is validated by a good agreement in numerical solutions for thermal convection/dispersion using original and average layer properties, respectively (Figs. 1 and 2 in the Supplementary Data File). The upscaling approach is applied to well-log data of a geothermal reservoir in Copenhagen featuring many interspersed layers. After upscaling, the formation with 93 layers of thickness 1 &#8211; 3 meters is upscaled to 12 layers (Fig. 3 in the Supplementary Data File). The effective thermal diffusivity &#945;<sub>eff</sub> in the flow direction is about a factor of 10 times greater than original thermal diffusivity of the rock. Thus, &#945;<sub>eff</sub> should be used as simulation inputs for representing more accurately geothermal processes in the up-scaled system.</p><p>&#160;</p><p>&#160;</p>" @default.
- W3208803971 created "2021-11-08" @default.
- W3208803971 creator A5007817752 @default.
- W3208803971 creator A5020006925 @default.
- W3208803971 date "2021-03-04" @default.
- W3208803971 modified "2023-09-26" @default.
- W3208803971 title "Application of Thermal Taylor Dispersion to Upscaling of Geothermal Processes in Heterogeneous Formations" @default.
- W3208803971 doi "https://doi.org/10.5194/egusphere-egu21-10564" @default.
- W3208803971 hasPublicationYear "2021" @default.
- W3208803971 type Work @default.
- W3208803971 sameAs 3208803971 @default.
- W3208803971 citedByCount "0" @default.
- W3208803971 crossrefType "posted-content" @default.
- W3208803971 hasAuthorship W3208803971A5007817752 @default.
- W3208803971 hasAuthorship W3208803971A5020006925 @default.
- W3208803971 hasConcept C10899652 @default.
- W3208803971 hasConcept C111766609 @default.
- W3208803971 hasConcept C120665830 @default.
- W3208803971 hasConcept C121332964 @default.
- W3208803971 hasConcept C172100665 @default.
- W3208803971 hasConcept C177562468 @default.
- W3208803971 hasConcept C185592680 @default.
- W3208803971 hasConcept C204530211 @default.
- W3208803971 hasConcept C37668627 @default.
- W3208803971 hasConcept C8058405 @default.
- W3208803971 hasConcept C97355855 @default.
- W3208803971 hasConceptScore W3208803971C10899652 @default.
- W3208803971 hasConceptScore W3208803971C111766609 @default.
- W3208803971 hasConceptScore W3208803971C120665830 @default.
- W3208803971 hasConceptScore W3208803971C121332964 @default.
- W3208803971 hasConceptScore W3208803971C172100665 @default.
- W3208803971 hasConceptScore W3208803971C177562468 @default.
- W3208803971 hasConceptScore W3208803971C185592680 @default.
- W3208803971 hasConceptScore W3208803971C204530211 @default.
- W3208803971 hasConceptScore W3208803971C37668627 @default.
- W3208803971 hasConceptScore W3208803971C8058405 @default.
- W3208803971 hasConceptScore W3208803971C97355855 @default.
- W3208803971 hasLocation W32088039711 @default.
- W3208803971 hasOpenAccess W3208803971 @default.
- W3208803971 hasPrimaryLocation W32088039711 @default.
- W3208803971 hasRelatedWork W16049995 @default.
- W3208803971 hasRelatedWork W18977020 @default.
- W3208803971 hasRelatedWork W21540175 @default.
- W3208803971 hasRelatedWork W3368115 @default.
- W3208803971 hasRelatedWork W6850189 @default.
- W3208803971 hasRelatedWork W7422084 @default.
- W3208803971 hasRelatedWork W7538373 @default.
- W3208803971 hasRelatedWork W8682891 @default.
- W3208803971 hasRelatedWork W9499942 @default.
- W3208803971 hasRelatedWork W208895 @default.
- W3208803971 isParatext "false" @default.
- W3208803971 isRetracted "false" @default.
- W3208803971 magId "3208803971" @default.
- W3208803971 workType "article" @default.