Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208821509> ?p ?o ?g. }
- W3208821509 endingPage "779" @default.
- W3208821509 startingPage "767" @default.
- W3208821509 abstract "Cycling is an eco-friendly and sustainable mode of transportation. Despite its benefits, the cyclists’ risk of collision is still high when interacting with other road users. This study analyzed self-reported near-miss and collision event descriptions for the United States provided by the crowdsourcing platform, BikeMaps.org. Innovative and efficient analytic methods are needed to generate useful information from unstructured textual data sources in the transportation domain. In this study, explorative text mining, topic modeling, and machine learning are utilized to gain insights from the unstructured textual descriptions of crowdsourced near-miss and collision events. The approaches are used to unveil prevalent words and word associations for near-miss and collision events. Structural Topic Modeling (STM) is deployed to autogenerate latent themes or topics from the event descriptions. The generated topic proportions are used as input in Artificial Neural Networks (ANN) to estimate the cyclist’s propensity to a collision. It was found that cyclists had a higher propensity to a collision in topics that articulated vehicle encroachment to the bike lane, on-street parking close or into the bike lane resulting in dooring, and drivers’ violations at the crosswalk. The results and methodology used in this study can assist engineers, policymakers, and law enforcement officers to proactively reduce potential cyclist collisions, prioritizing areas where cyclist safety improvements are needed, and ultimately promoting bicycle ridership in our communities." @default.
- W3208821509 created "2021-11-08" @default.
- W3208821509 creator A5020636933 @default.
- W3208821509 creator A5038464425 @default.
- W3208821509 creator A5044476918 @default.
- W3208821509 creator A5047291051 @default.
- W3208821509 creator A5051470108 @default.
- W3208821509 date "2022-12-01" @default.
- W3208821509 modified "2023-10-16" @default.
- W3208821509 title "Automatic topics extraction from crowdsourced cyclists near-miss and collision reports using text mining and Artificial Neural Networks" @default.
- W3208821509 cites W1978475450 @default.
- W3208821509 cites W1986264434 @default.
- W3208821509 cites W1992635869 @default.
- W3208821509 cites W2028092510 @default.
- W3208821509 cites W2039207044 @default.
- W3208821509 cites W2079091772 @default.
- W3208821509 cites W2079831390 @default.
- W3208821509 cites W2131221181 @default.
- W3208821509 cites W2133898263 @default.
- W3208821509 cites W2166192428 @default.
- W3208821509 cites W2169795366 @default.
- W3208821509 cites W2189201391 @default.
- W3208821509 cites W2223092947 @default.
- W3208821509 cites W2306119308 @default.
- W3208821509 cites W2338179207 @default.
- W3208821509 cites W2345504616 @default.
- W3208821509 cites W2580318018 @default.
- W3208821509 cites W2594450800 @default.
- W3208821509 cites W2595432747 @default.
- W3208821509 cites W2771407654 @default.
- W3208821509 cites W2781571166 @default.
- W3208821509 cites W2792998674 @default.
- W3208821509 cites W2886367112 @default.
- W3208821509 cites W2904161069 @default.
- W3208821509 cites W2905382896 @default.
- W3208821509 cites W2933035324 @default.
- W3208821509 cites W2933990579 @default.
- W3208821509 cites W2937059003 @default.
- W3208821509 cites W3013902092 @default.
- W3208821509 cites W3044418086 @default.
- W3208821509 cites W3114368595 @default.
- W3208821509 cites W3140881567 @default.
- W3208821509 doi "https://doi.org/10.1016/j.ijtst.2021.10.005" @default.
- W3208821509 hasPublicationYear "2022" @default.
- W3208821509 type Work @default.
- W3208821509 sameAs 3208821509 @default.
- W3208821509 citedByCount "5" @default.
- W3208821509 countsByYear W32088215092023 @default.
- W3208821509 crossrefType "journal-article" @default.
- W3208821509 hasAuthorship W3208821509A5020636933 @default.
- W3208821509 hasAuthorship W3208821509A5038464425 @default.
- W3208821509 hasAuthorship W3208821509A5044476918 @default.
- W3208821509 hasAuthorship W3208821509A5047291051 @default.
- W3208821509 hasAuthorship W3208821509A5051470108 @default.
- W3208821509 hasConcept C119857082 @default.
- W3208821509 hasConcept C121193887 @default.
- W3208821509 hasConcept C121332964 @default.
- W3208821509 hasConcept C121704057 @default.
- W3208821509 hasConcept C127413603 @default.
- W3208821509 hasConcept C136764020 @default.
- W3208821509 hasConcept C154945302 @default.
- W3208821509 hasConcept C17744445 @default.
- W3208821509 hasConcept C199539241 @default.
- W3208821509 hasConcept C22212356 @default.
- W3208821509 hasConcept C2522767166 @default.
- W3208821509 hasConcept C2777113093 @default.
- W3208821509 hasConcept C2779662365 @default.
- W3208821509 hasConcept C2779777834 @default.
- W3208821509 hasConcept C2780262971 @default.
- W3208821509 hasConcept C38652104 @default.
- W3208821509 hasConcept C41008148 @default.
- W3208821509 hasConcept C62230096 @default.
- W3208821509 hasConcept C62520636 @default.
- W3208821509 hasConceptScore W3208821509C119857082 @default.
- W3208821509 hasConceptScore W3208821509C121193887 @default.
- W3208821509 hasConceptScore W3208821509C121332964 @default.
- W3208821509 hasConceptScore W3208821509C121704057 @default.
- W3208821509 hasConceptScore W3208821509C127413603 @default.
- W3208821509 hasConceptScore W3208821509C136764020 @default.
- W3208821509 hasConceptScore W3208821509C154945302 @default.
- W3208821509 hasConceptScore W3208821509C17744445 @default.
- W3208821509 hasConceptScore W3208821509C199539241 @default.
- W3208821509 hasConceptScore W3208821509C22212356 @default.
- W3208821509 hasConceptScore W3208821509C2522767166 @default.
- W3208821509 hasConceptScore W3208821509C2777113093 @default.
- W3208821509 hasConceptScore W3208821509C2779662365 @default.
- W3208821509 hasConceptScore W3208821509C2779777834 @default.
- W3208821509 hasConceptScore W3208821509C2780262971 @default.
- W3208821509 hasConceptScore W3208821509C38652104 @default.
- W3208821509 hasConceptScore W3208821509C41008148 @default.
- W3208821509 hasConceptScore W3208821509C62230096 @default.
- W3208821509 hasConceptScore W3208821509C62520636 @default.
- W3208821509 hasIssue "4" @default.
- W3208821509 hasLocation W32088215091 @default.
- W3208821509 hasOpenAccess W3208821509 @default.
- W3208821509 hasPrimaryLocation W32088215091 @default.
- W3208821509 hasRelatedWork W1856093893 @default.
- W3208821509 hasRelatedWork W1998372340 @default.