Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208832104> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3208832104 endingPage "012033" @default.
- W3208832104 startingPage "012033" @default.
- W3208832104 abstract "Abstract Future climate projections are valuable datasets to investigate the impacts of future climate changes on natural disasters such as intense precipitation, severe flood, and drought. However, they are too coarse depending on the purpose, and downscaling is required in such a case. There is nowadays a downscaling technique using deep learning such as CNN. Atmospheric information can be used as an input for precipitation downscaling by means of Convolutional Neural Network (CNN). For such precipitation downscaling, the spatial and temporal resolution of the atmospheric information may be important. This study obtained atmospheric information from a coarser reanalysis dataset and a finer reanalysis dataset as input for precipitation downscaling. As a coarser reanalysis dataset, ERA-Interim was selected. As a finer reanalysis dataset, ERA5 was utilized. Then, this study investigated the effect of spatial and temporal resolution of input data on the estimation accuracy of precipitation downscaling by CNN. For simplification, daily average precipitation at a watershed was used as the target data. The results show advantage of the use of a higher resolution as input can improve the model accuracy." @default.
- W3208832104 created "2021-11-08" @default.
- W3208832104 creator A5019424269 @default.
- W3208832104 creator A5055969180 @default.
- W3208832104 creator A5061981383 @default.
- W3208832104 creator A5073711205 @default.
- W3208832104 creator A5012465812 @default.
- W3208832104 date "2021-10-01" @default.
- W3208832104 modified "2023-09-26" @default.
- W3208832104 title "Effects of the spatial and temporal resolution of meteorological data on the accuracy of precipitation estimation by means of CNN" @default.
- W3208832104 cites W1975921100 @default.
- W3208832104 cites W2800819102 @default.
- W3208832104 cites W2909984890 @default.
- W3208832104 cites W2977666392 @default.
- W3208832104 doi "https://doi.org/10.1088/1755-1315/851/1/012033" @default.
- W3208832104 hasPublicationYear "2021" @default.
- W3208832104 type Work @default.
- W3208832104 sameAs 3208832104 @default.
- W3208832104 citedByCount "0" @default.
- W3208832104 crossrefType "journal-article" @default.
- W3208832104 hasAuthorship W3208832104A5012465812 @default.
- W3208832104 hasAuthorship W3208832104A5019424269 @default.
- W3208832104 hasAuthorship W3208832104A5055969180 @default.
- W3208832104 hasAuthorship W3208832104A5061981383 @default.
- W3208832104 hasAuthorship W3208832104A5073711205 @default.
- W3208832104 hasBestOaLocation W32088321041 @default.
- W3208832104 hasConcept C107054158 @default.
- W3208832104 hasConcept C119857082 @default.
- W3208832104 hasConcept C127313418 @default.
- W3208832104 hasConcept C150547873 @default.
- W3208832104 hasConcept C153294291 @default.
- W3208832104 hasConcept C154945302 @default.
- W3208832104 hasConcept C166957645 @default.
- W3208832104 hasConcept C205649164 @default.
- W3208832104 hasConcept C39432304 @default.
- W3208832104 hasConcept C41008148 @default.
- W3208832104 hasConcept C41156917 @default.
- W3208832104 hasConcept C49204034 @default.
- W3208832104 hasConcept C74256435 @default.
- W3208832104 hasConcept C75398719 @default.
- W3208832104 hasConcept C81363708 @default.
- W3208832104 hasConceptScore W3208832104C107054158 @default.
- W3208832104 hasConceptScore W3208832104C119857082 @default.
- W3208832104 hasConceptScore W3208832104C127313418 @default.
- W3208832104 hasConceptScore W3208832104C150547873 @default.
- W3208832104 hasConceptScore W3208832104C153294291 @default.
- W3208832104 hasConceptScore W3208832104C154945302 @default.
- W3208832104 hasConceptScore W3208832104C166957645 @default.
- W3208832104 hasConceptScore W3208832104C205649164 @default.
- W3208832104 hasConceptScore W3208832104C39432304 @default.
- W3208832104 hasConceptScore W3208832104C41008148 @default.
- W3208832104 hasConceptScore W3208832104C41156917 @default.
- W3208832104 hasConceptScore W3208832104C49204034 @default.
- W3208832104 hasConceptScore W3208832104C74256435 @default.
- W3208832104 hasConceptScore W3208832104C75398719 @default.
- W3208832104 hasConceptScore W3208832104C81363708 @default.
- W3208832104 hasIssue "1" @default.
- W3208832104 hasLocation W32088321041 @default.
- W3208832104 hasOpenAccess W3208832104 @default.
- W3208832104 hasPrimaryLocation W32088321041 @default.
- W3208832104 hasRelatedWork W1896667768 @default.
- W3208832104 hasRelatedWork W2161549781 @default.
- W3208832104 hasRelatedWork W2203162534 @default.
- W3208832104 hasRelatedWork W2742823986 @default.
- W3208832104 hasRelatedWork W2984261845 @default.
- W3208832104 hasRelatedWork W3099516916 @default.
- W3208832104 hasRelatedWork W3177241431 @default.
- W3208832104 hasRelatedWork W3184167782 @default.
- W3208832104 hasRelatedWork W3196088787 @default.
- W3208832104 hasRelatedWork W3200829975 @default.
- W3208832104 hasVolume "851" @default.
- W3208832104 isParatext "false" @default.
- W3208832104 isRetracted "false" @default.
- W3208832104 magId "3208832104" @default.
- W3208832104 workType "article" @default.