Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208844894> ?p ?o ?g. }
- W3208844894 endingPage "105589" @default.
- W3208844894 startingPage "105589" @default.
- W3208844894 abstract "This study explores a dual-channel management problem of a retailer selling multiple products to customers through a traditional retail channel and an online channel to maximize expected profit. The prices and order quantities of both the online and the retail channels and the delivery times of the online channel are the decision variables. The demand for each product and each channel is assumed to be random and dependent on the prices of both channels and on the online delivery time. In addition, to ensure an adequate performance, service level requirements are considered and are modeled as joint chance constraints. Wasserstein uncertainty sets using the Wasserstein metric for demand probability distributions centered at the empirical distributions on the observed demands from the historical data are constructed in a data-driven approach. Accordingly, a data-driven distributionally robust joint chance constrained model is developed based on the data-driven Wasserstein uncertainty sets. A conservative CVaR approximation is used for the distributionally robust joint chance constraints. Through mathematical manipulations, the developed model is transformed into a bilinear program, which can be approximated by a mixed integer quadratic programming model using piecewise affine relaxations of the bilinear terms and can be solved efficiently. Numerical experiments are performed to illustrate the effectiveness and practicality of the proposed data-driven distributionally robust optimization approach to deal with demand uncertainties. The effects of the key parameters such as delivery time sensitivity, price sensitivity and customer channel preference are analyzed and managerial insights are provided. The results show that the decisions obtained by the proposed approach are robust to hedge against demand uncertainties. The proposed model and solution approach can provide effective decision supports for retailers selling products through an online channel and a traditional retail channel without reliable demand distribution information. Furthermore, compared with the L1-norm and the L2-norm, the L∞-norm is verified to perform better when used in the Wasserstein metric for constructing the Wasserstein uncertainty sets." @default.
- W3208844894 created "2021-11-08" @default.
- W3208844894 creator A5013114634 @default.
- W3208844894 creator A5042253019 @default.
- W3208844894 creator A5060242440 @default.
- W3208844894 date "2022-02-01" @default.
- W3208844894 modified "2023-10-06" @default.
- W3208844894 title "Optimizing decisions for a dual-channel retailer with service level requirements and demand uncertainties: A Wasserstein metric-based distributionally robust optimization approach" @default.
- W3208844894 cites W1484551447 @default.
- W3208844894 cites W1964070513 @default.
- W3208844894 cites W1965266366 @default.
- W3208844894 cites W1977742349 @default.
- W3208844894 cites W2006041100 @default.
- W3208844894 cites W2007817872 @default.
- W3208844894 cites W2047206123 @default.
- W3208844894 cites W2047812497 @default.
- W3208844894 cites W2092660864 @default.
- W3208844894 cites W2107015600 @default.
- W3208844894 cites W2119728383 @default.
- W3208844894 cites W2121871638 @default.
- W3208844894 cites W2131116400 @default.
- W3208844894 cites W2342716782 @default.
- W3208844894 cites W2346947063 @default.
- W3208844894 cites W2396268331 @default.
- W3208844894 cites W2537619949 @default.
- W3208844894 cites W2541367425 @default.
- W3208844894 cites W2551929175 @default.
- W3208844894 cites W2728742075 @default.
- W3208844894 cites W2734061598 @default.
- W3208844894 cites W2765244343 @default.
- W3208844894 cites W2773225254 @default.
- W3208844894 cites W2793108066 @default.
- W3208844894 cites W2800351343 @default.
- W3208844894 cites W2809740246 @default.
- W3208844894 cites W2941324005 @default.
- W3208844894 cites W2963134136 @default.
- W3208844894 cites W2963450292 @default.
- W3208844894 cites W2964289666 @default.
- W3208844894 cites W2969288006 @default.
- W3208844894 cites W2972428093 @default.
- W3208844894 cites W3091650339 @default.
- W3208844894 cites W3183992532 @default.
- W3208844894 doi "https://doi.org/10.1016/j.cor.2021.105589" @default.
- W3208844894 hasPublicationYear "2022" @default.
- W3208844894 type Work @default.
- W3208844894 sameAs 3208844894 @default.
- W3208844894 citedByCount "14" @default.
- W3208844894 countsByYear W32088448942022 @default.
- W3208844894 countsByYear W32088448942023 @default.
- W3208844894 crossrefType "journal-article" @default.
- W3208844894 hasAuthorship W3208844894A5013114634 @default.
- W3208844894 hasAuthorship W3208844894A5042253019 @default.
- W3208844894 hasAuthorship W3208844894A5060242440 @default.
- W3208844894 hasConcept C124952713 @default.
- W3208844894 hasConcept C126255220 @default.
- W3208844894 hasConcept C127162648 @default.
- W3208844894 hasConcept C127413603 @default.
- W3208844894 hasConcept C137631369 @default.
- W3208844894 hasConcept C142362112 @default.
- W3208844894 hasConcept C162324750 @default.
- W3208844894 hasConcept C187736073 @default.
- W3208844894 hasConcept C193254401 @default.
- W3208844894 hasConcept C21200559 @default.
- W3208844894 hasConcept C24326235 @default.
- W3208844894 hasConcept C2777634741 @default.
- W3208844894 hasConcept C2779922397 @default.
- W3208844894 hasConcept C2780980858 @default.
- W3208844894 hasConcept C28826006 @default.
- W3208844894 hasConcept C31258907 @default.
- W3208844894 hasConcept C32896092 @default.
- W3208844894 hasConcept C33923547 @default.
- W3208844894 hasConcept C41008148 @default.
- W3208844894 hasConcept C42475967 @default.
- W3208844894 hasConcept C5496284 @default.
- W3208844894 hasConcept C91765299 @default.
- W3208844894 hasConceptScore W3208844894C124952713 @default.
- W3208844894 hasConceptScore W3208844894C126255220 @default.
- W3208844894 hasConceptScore W3208844894C127162648 @default.
- W3208844894 hasConceptScore W3208844894C127413603 @default.
- W3208844894 hasConceptScore W3208844894C137631369 @default.
- W3208844894 hasConceptScore W3208844894C142362112 @default.
- W3208844894 hasConceptScore W3208844894C162324750 @default.
- W3208844894 hasConceptScore W3208844894C187736073 @default.
- W3208844894 hasConceptScore W3208844894C193254401 @default.
- W3208844894 hasConceptScore W3208844894C21200559 @default.
- W3208844894 hasConceptScore W3208844894C24326235 @default.
- W3208844894 hasConceptScore W3208844894C2777634741 @default.
- W3208844894 hasConceptScore W3208844894C2779922397 @default.
- W3208844894 hasConceptScore W3208844894C2780980858 @default.
- W3208844894 hasConceptScore W3208844894C28826006 @default.
- W3208844894 hasConceptScore W3208844894C31258907 @default.
- W3208844894 hasConceptScore W3208844894C32896092 @default.
- W3208844894 hasConceptScore W3208844894C33923547 @default.
- W3208844894 hasConceptScore W3208844894C41008148 @default.
- W3208844894 hasConceptScore W3208844894C42475967 @default.
- W3208844894 hasConceptScore W3208844894C5496284 @default.
- W3208844894 hasConceptScore W3208844894C91765299 @default.
- W3208844894 hasFunder F4320321001 @default.