Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208853247> ?p ?o ?g. }
- W3208853247 endingPage "115021" @default.
- W3208853247 startingPage "115021" @default.
- W3208853247 abstract "According to the density functional theory (DFT) calculations, the first hyperpolarizabilities of the carbon nanocone (CNC)–based systems in a D–π–A framework can be prominently improved by constructing the mixed π-conjugated bridge. The hybrid π-conjugated bridge is constructed by modifying the bottom edge of CNC with –(CH CH) x –NH 2 /NO 2 chain. By connecting the –(CH CH) x –NH 2 chain with electron-donating characteristic, the first hyperpolarizabilities of these cone-chain systems can be enhanced more availably, and the substitution position can also play an important role in determining the β 0 value. The TDDFT calculations show that building the simple cone-chain motif can effectively improve the degree of charge transfer and reduce the transition energy, thus leading to a considerably large first hyperpolarizability, which is much larger than that of the corresponding directly NH 2 -decorated CNC system with the same conjugated length. Especially, the first hyperpolarizabilities of these cone-chain motifs (CNC–(CH CH) x –NH 2 ) can increase dramatically with the extension of –(CH CH) x –NH 2 chain. Furthermore, in view of the unique horn-shaped structure of CNC, another –(CH CH) x –NH 2 chain is added at the bottom edge for double-substitution, and it can further augment the first hyperpolarizability compared with the single-substitution. In addition, the length ratio of cone to chain in the mixed π-conjugate bridge can also have a crucial effect on the β 0 value of these cone-chain motifs. Using the –(CH CH) x –NH 2 with a comparable conjugated size to modify the bottom edge of cone can be an effective strategy for achieving the remarkable NLO response in the CNC-based system with D–π–A framework. These fascinating findings are advantageous for the design of new high-performance NLO materials based on CNCs. Constructing a simple cone–chain motif can be considered as a new and effective strategy to significantly increase the first hyperpolarizability of carbon nanocones (CNCs), which can be mainly attributed to the fact that when linking the π-conjugated –(CH CH) x –NH 2 /NO 2 chain with electron-donating/withdrawing characteristic, the abundant π electrons of CNCs can be well directed to result in the more effective charge transfer, just like inserting a straw into a glass of water, it allows the water to flow out more directionally. • Constructing a simple cone–chain motif can significantly increase the first hyperpolarizability of carbon nanocones (CNCs). • The β 0 value of CNC can be enhanced more effectively by linking electron-donating -CH=CH–NH 2 chain. • When elongating the chain length, a monotonous increasing trend can be observed for the β 0 value. • The double-chain substitution of –(CH=CH) x –NH 2 can further enhance the β 0 value of CNC system. • The β 0 value of CNC l –(CH=CH) x –NH 2 can be adjusted effectively by changing the length ratio of cone to chain." @default.
- W3208853247 created "2021-11-08" @default.
- W3208853247 creator A5025539966 @default.
- W3208853247 creator A5047320381 @default.
- W3208853247 creator A5074188889 @default.
- W3208853247 creator A5080693344 @default.
- W3208853247 date "2021-10-01" @default.
- W3208853247 modified "2023-09-28" @default.
- W3208853247 title "Constructing a simple Cone–Chain motif to significantly enhance the first hyperpolarizability of horn-shaped carbon nanocones" @default.
- W3208853247 cites W1968248721 @default.
- W3208853247 cites W1972803532 @default.
- W3208853247 cites W1975879685 @default.
- W3208853247 cites W1977283763 @default.
- W3208853247 cites W1980531579 @default.
- W3208853247 cites W1984891688 @default.
- W3208853247 cites W1992984434 @default.
- W3208853247 cites W2006079418 @default.
- W3208853247 cites W2016937746 @default.
- W3208853247 cites W2020986397 @default.
- W3208853247 cites W2024355976 @default.
- W3208853247 cites W2035887397 @default.
- W3208853247 cites W2040325103 @default.
- W3208853247 cites W2040520122 @default.
- W3208853247 cites W2042998200 @default.
- W3208853247 cites W2061555015 @default.
- W3208853247 cites W2063663126 @default.
- W3208853247 cites W2067269814 @default.
- W3208853247 cites W2067311574 @default.
- W3208853247 cites W2070699017 @default.
- W3208853247 cites W2086650063 @default.
- W3208853247 cites W2090865552 @default.
- W3208853247 cites W2124713181 @default.
- W3208853247 cites W2147058536 @default.
- W3208853247 cites W2150697053 @default.
- W3208853247 cites W2160457132 @default.
- W3208853247 cites W2162490449 @default.
- W3208853247 cites W2169262306 @default.
- W3208853247 cites W2171445884 @default.
- W3208853247 cites W2187439399 @default.
- W3208853247 cites W2263605768 @default.
- W3208853247 cites W2321061135 @default.
- W3208853247 cites W2328913286 @default.
- W3208853247 cites W2341375611 @default.
- W3208853247 cites W2401064338 @default.
- W3208853247 cites W2530112242 @default.
- W3208853247 cites W2580243119 @default.
- W3208853247 cites W2582655065 @default.
- W3208853247 cites W2598007265 @default.
- W3208853247 cites W2619920133 @default.
- W3208853247 cites W2748568838 @default.
- W3208853247 cites W2791582335 @default.
- W3208853247 cites W2791814213 @default.
- W3208853247 cites W2809056480 @default.
- W3208853247 cites W2828754377 @default.
- W3208853247 cites W2884235676 @default.
- W3208853247 cites W2890939048 @default.
- W3208853247 cites W2906515968 @default.
- W3208853247 cites W2965235319 @default.
- W3208853247 cites W2995211831 @default.
- W3208853247 cites W3022973919 @default.
- W3208853247 cites W3025319337 @default.
- W3208853247 cites W3029654146 @default.
- W3208853247 cites W3037421933 @default.
- W3208853247 cites W3047094407 @default.
- W3208853247 cites W3081452487 @default.
- W3208853247 doi "https://doi.org/10.1016/j.physe.2021.115021" @default.
- W3208853247 hasPublicationYear "2021" @default.
- W3208853247 type Work @default.
- W3208853247 sameAs 3208853247 @default.
- W3208853247 citedByCount "0" @default.
- W3208853247 crossrefType "journal-article" @default.
- W3208853247 hasAuthorship W3208853247A5025539966 @default.
- W3208853247 hasAuthorship W3208853247A5047320381 @default.
- W3208853247 hasAuthorship W3208853247A5074188889 @default.
- W3208853247 hasAuthorship W3208853247A5080693344 @default.
- W3208853247 hasConcept C112613896 @default.
- W3208853247 hasConcept C121332964 @default.
- W3208853247 hasConcept C1276947 @default.
- W3208853247 hasConcept C139287275 @default.
- W3208853247 hasConcept C147597530 @default.
- W3208853247 hasConcept C152365726 @default.
- W3208853247 hasConcept C178790620 @default.
- W3208853247 hasConcept C185592680 @default.
- W3208853247 hasConcept C192562407 @default.
- W3208853247 hasConcept C199185054 @default.
- W3208853247 hasConcept C2780694488 @default.
- W3208853247 hasConcept C2991667435 @default.
- W3208853247 hasConcept C32909587 @default.
- W3208853247 hasConcept C521977710 @default.
- W3208853247 hasConcept C8010536 @default.
- W3208853247 hasConceptScore W3208853247C112613896 @default.
- W3208853247 hasConceptScore W3208853247C121332964 @default.
- W3208853247 hasConceptScore W3208853247C1276947 @default.
- W3208853247 hasConceptScore W3208853247C139287275 @default.
- W3208853247 hasConceptScore W3208853247C147597530 @default.
- W3208853247 hasConceptScore W3208853247C152365726 @default.
- W3208853247 hasConceptScore W3208853247C178790620 @default.
- W3208853247 hasConceptScore W3208853247C185592680 @default.