Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208857802> ?p ?o ?g. }
- W3208857802 abstract "Abstract As a critical component of coherent X-ray diffraction imaging (CDI), phase retrieval has been extensively applied in X-ray structural science to recover the 3D morphological information inside measured particles. Despite meeting all the oversampling requirements of Sayre and Shannon, current phase retrieval approaches still have trouble achieving a unique inversion of experimental data in the presence of noise. Here, we propose to overcome this limitation by incorporating a 3D Machine Learning (ML) model combining (optional) supervised learning with transfer learning. The trained ML model can rapidly provide an immediate result with high accuracy which could benefit real-time experiments, and the predicted result can be further refined with transfer learning. More significantly, the proposed ML model can be used without any prior training to learn the missing phases of an image based on minimization of an appropriate ‘loss function’ alone. We demonstrate significantly improved performance with experimental Bragg CDI data over traditional iterative phase retrieval algorithms." @default.
- W3208857802 created "2021-11-08" @default.
- W3208857802 creator A5027172957 @default.
- W3208857802 creator A5048176207 @default.
- W3208857802 creator A5049230497 @default.
- W3208857802 creator A5062502046 @default.
- W3208857802 creator A5067523474 @default.
- W3208857802 creator A5068225547 @default.
- W3208857802 creator A5071204312 @default.
- W3208857802 creator A5083634793 @default.
- W3208857802 date "2021-10-28" @default.
- W3208857802 modified "2023-10-14" @default.
- W3208857802 title "Three-dimensional coherent X-ray diffraction imaging via deep convolutional neural networks" @default.
- W3208857802 cites W1984817386 @default.
- W3208857802 cites W1990128027 @default.
- W3208857802 cites W1993770146 @default.
- W3208857802 cites W2002849329 @default.
- W3208857802 cites W2007593159 @default.
- W3208857802 cites W2015911499 @default.
- W3208857802 cites W2017692871 @default.
- W3208857802 cites W2026932583 @default.
- W3208857802 cites W2033257018 @default.
- W3208857802 cites W2046625000 @default.
- W3208857802 cites W2052552885 @default.
- W3208857802 cites W2089550676 @default.
- W3208857802 cites W2092306008 @default.
- W3208857802 cites W2097852139 @default.
- W3208857802 cites W2101769813 @default.
- W3208857802 cites W2108078415 @default.
- W3208857802 cites W2108194908 @default.
- W3208857802 cites W2119379479 @default.
- W3208857802 cites W2152477315 @default.
- W3208857802 cites W2156713402 @default.
- W3208857802 cites W2159759190 @default.
- W3208857802 cites W2573588097 @default.
- W3208857802 cites W2615567727 @default.
- W3208857802 cites W2807071916 @default.
- W3208857802 cites W2890339033 @default.
- W3208857802 cites W2953002888 @default.
- W3208857802 cites W2962778772 @default.
- W3208857802 cites W3007912468 @default.
- W3208857802 cites W3009934896 @default.
- W3208857802 cites W3025790685 @default.
- W3208857802 cites W3042859327 @default.
- W3208857802 cites W3047820180 @default.
- W3208857802 cites W3087692981 @default.
- W3208857802 cites W3103790930 @default.
- W3208857802 cites W3106175022 @default.
- W3208857802 cites W3112965401 @default.
- W3208857802 cites W3120512068 @default.
- W3208857802 cites W3120917317 @default.
- W3208857802 cites W4206920462 @default.
- W3208857802 doi "https://doi.org/10.1038/s41524-021-00644-z" @default.
- W3208857802 hasPublicationYear "2021" @default.
- W3208857802 type Work @default.
- W3208857802 sameAs 3208857802 @default.
- W3208857802 citedByCount "15" @default.
- W3208857802 countsByYear W32088578022022 @default.
- W3208857802 countsByYear W32088578022023 @default.
- W3208857802 crossrefType "journal-article" @default.
- W3208857802 hasAuthorship W3208857802A5027172957 @default.
- W3208857802 hasAuthorship W3208857802A5048176207 @default.
- W3208857802 hasAuthorship W3208857802A5049230497 @default.
- W3208857802 hasAuthorship W3208857802A5062502046 @default.
- W3208857802 hasAuthorship W3208857802A5067523474 @default.
- W3208857802 hasAuthorship W3208857802A5068225547 @default.
- W3208857802 hasAuthorship W3208857802A5071204312 @default.
- W3208857802 hasAuthorship W3208857802A5083634793 @default.
- W3208857802 hasBestOaLocation W32088578021 @default.
- W3208857802 hasConcept C102519508 @default.
- W3208857802 hasConcept C109007969 @default.
- W3208857802 hasConcept C11413529 @default.
- W3208857802 hasConcept C120665830 @default.
- W3208857802 hasConcept C121332964 @default.
- W3208857802 hasConcept C12952745 @default.
- W3208857802 hasConcept C147764199 @default.
- W3208857802 hasConcept C150899416 @default.
- W3208857802 hasConcept C151730666 @default.
- W3208857802 hasConcept C153180895 @default.
- W3208857802 hasConcept C154945302 @default.
- W3208857802 hasConcept C1893757 @default.
- W3208857802 hasConcept C197323446 @default.
- W3208857802 hasConcept C199360897 @default.
- W3208857802 hasConcept C207114421 @default.
- W3208857802 hasConcept C2776257435 @default.
- W3208857802 hasConcept C31258907 @default.
- W3208857802 hasConcept C41008148 @default.
- W3208857802 hasConcept C44280652 @default.
- W3208857802 hasConcept C62520636 @default.
- W3208857802 hasConcept C81363708 @default.
- W3208857802 hasConcept C81793267 @default.
- W3208857802 hasConcept C86803240 @default.
- W3208857802 hasConceptScore W3208857802C102519508 @default.
- W3208857802 hasConceptScore W3208857802C109007969 @default.
- W3208857802 hasConceptScore W3208857802C11413529 @default.
- W3208857802 hasConceptScore W3208857802C120665830 @default.
- W3208857802 hasConceptScore W3208857802C121332964 @default.
- W3208857802 hasConceptScore W3208857802C12952745 @default.
- W3208857802 hasConceptScore W3208857802C147764199 @default.
- W3208857802 hasConceptScore W3208857802C150899416 @default.