Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208888392> ?p ?o ?g. }
- W3208888392 endingPage "1701" @default.
- W3208888392 startingPage "1685" @default.
- W3208888392 abstract "With the onset of the COVID-19 pandemic, the automated diagnosis has become one of the most trending topics of research for faster mass screening. Deep learning-based approaches have been established as the most promising methods in this regard. However, the limitation of the labeled data is the main bottleneck of the data-hungry deep learning methods. In this paper, a two-stage deep CNN based scheme is proposed to detect COVID-19 from chest X-ray images for achieving optimum performance with limited training images. In the first stage, an encoder-decoder based autoencoder network is proposed, trained on chest X-ray images in an unsupervised manner, and the network learns to reconstruct the X-ray images. An encoder-merging network is proposed for the second stage that consists of different layers of the encoder model followed by a merging network. Here the encoder model is initialized with the weights learned on the first stage and the outputs from different layers of the encoder model are used effectively by being connected to a proposed merging network. An intelligent feature merging scheme is introduced in the proposed merging network. Finally, the encoder-merging network is trained for feature extraction of the X-ray images in a supervised manner and resulting features are used in the classification layers of the proposed architecture. Considering the final classification task, an EfficientNet-B4 network is utilized in both stages. An end to end training is performed for datasets containing classes: COVID-19, Normal, Bacterial Pneumonia, Viral Pneumonia. The proposed method offers very satisfactory performances compared to the state of the art methods and achieves an accuracy of 90:13% on the 4-class, 96:45% on a 3-class, and 99:39% on 2-class classification." @default.
- W3208888392 created "2021-11-08" @default.
- W3208888392 creator A5014251585 @default.
- W3208888392 creator A5055505982 @default.
- W3208888392 creator A5074606314 @default.
- W3208888392 creator A5076405964 @default.
- W3208888392 creator A5080886966 @default.
- W3208888392 creator A5082490455 @default.
- W3208888392 date "2021-10-01" @default.
- W3208888392 modified "2023-09-24" @default.
- W3208888392 title "AutoCovNet: Unsupervised feature learning using autoencoder and feature merging for detection of COVID-19 from chest X-ray images" @default.
- W3208888392 cites W1994062553 @default.
- W3208888392 cites W2167277498 @default.
- W3208888392 cites W2442067198 @default.
- W3208888392 cites W2556470218 @default.
- W3208888392 cites W2731736087 @default.
- W3208888392 cites W2782977076 @default.
- W3208888392 cites W2788633781 @default.
- W3208888392 cites W2905215565 @default.
- W3208888392 cites W2978808814 @default.
- W3208888392 cites W3013130152 @default.
- W3208888392 cites W3017331996 @default.
- W3208888392 cites W3017855299 @default.
- W3208888392 cites W3023402713 @default.
- W3208888392 cites W3033616466 @default.
- W3208888392 cites W3036638392 @default.
- W3208888392 cites W3037914312 @default.
- W3208888392 cites W3083753334 @default.
- W3208888392 cites W3085306326 @default.
- W3208888392 cites W3092624683 @default.
- W3208888392 cites W3101606529 @default.
- W3208888392 cites W3105081694 @default.
- W3208888392 cites W3122459568 @default.
- W3208888392 cites W3162351260 @default.
- W3208888392 doi "https://doi.org/10.1016/j.bbe.2021.09.004" @default.
- W3208888392 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8526490" @default.
- W3208888392 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34690398" @default.
- W3208888392 hasPublicationYear "2021" @default.
- W3208888392 type Work @default.
- W3208888392 sameAs 3208888392 @default.
- W3208888392 citedByCount "13" @default.
- W3208888392 countsByYear W32088883922022 @default.
- W3208888392 countsByYear W32088883922023 @default.
- W3208888392 crossrefType "journal-article" @default.
- W3208888392 hasAuthorship W3208888392A5014251585 @default.
- W3208888392 hasAuthorship W3208888392A5055505982 @default.
- W3208888392 hasAuthorship W3208888392A5074606314 @default.
- W3208888392 hasAuthorship W3208888392A5076405964 @default.
- W3208888392 hasAuthorship W3208888392A5080886966 @default.
- W3208888392 hasAuthorship W3208888392A5082490455 @default.
- W3208888392 hasBestOaLocation W32088883921 @default.
- W3208888392 hasConcept C101738243 @default.
- W3208888392 hasConcept C108583219 @default.
- W3208888392 hasConcept C111919701 @default.
- W3208888392 hasConcept C118505674 @default.
- W3208888392 hasConcept C134306372 @default.
- W3208888392 hasConcept C138885662 @default.
- W3208888392 hasConcept C149635348 @default.
- W3208888392 hasConcept C153180895 @default.
- W3208888392 hasConcept C154945302 @default.
- W3208888392 hasConcept C2776401178 @default.
- W3208888392 hasConcept C2780513914 @default.
- W3208888392 hasConcept C33923547 @default.
- W3208888392 hasConcept C41008148 @default.
- W3208888392 hasConcept C41895202 @default.
- W3208888392 hasConcept C52622490 @default.
- W3208888392 hasConcept C59404180 @default.
- W3208888392 hasConcept C77618280 @default.
- W3208888392 hasConceptScore W3208888392C101738243 @default.
- W3208888392 hasConceptScore W3208888392C108583219 @default.
- W3208888392 hasConceptScore W3208888392C111919701 @default.
- W3208888392 hasConceptScore W3208888392C118505674 @default.
- W3208888392 hasConceptScore W3208888392C134306372 @default.
- W3208888392 hasConceptScore W3208888392C138885662 @default.
- W3208888392 hasConceptScore W3208888392C149635348 @default.
- W3208888392 hasConceptScore W3208888392C153180895 @default.
- W3208888392 hasConceptScore W3208888392C154945302 @default.
- W3208888392 hasConceptScore W3208888392C2776401178 @default.
- W3208888392 hasConceptScore W3208888392C2780513914 @default.
- W3208888392 hasConceptScore W3208888392C33923547 @default.
- W3208888392 hasConceptScore W3208888392C41008148 @default.
- W3208888392 hasConceptScore W3208888392C41895202 @default.
- W3208888392 hasConceptScore W3208888392C52622490 @default.
- W3208888392 hasConceptScore W3208888392C59404180 @default.
- W3208888392 hasConceptScore W3208888392C77618280 @default.
- W3208888392 hasIssue "4" @default.
- W3208888392 hasLocation W32088883921 @default.
- W3208888392 hasLocation W32088883922 @default.
- W3208888392 hasLocation W32088883923 @default.
- W3208888392 hasOpenAccess W3208888392 @default.
- W3208888392 hasPrimaryLocation W32088883921 @default.
- W3208888392 hasRelatedWork W1576462183 @default.
- W3208888392 hasRelatedWork W2292254049 @default.
- W3208888392 hasRelatedWork W2546942002 @default.
- W3208888392 hasRelatedWork W2592385986 @default.
- W3208888392 hasRelatedWork W2772780115 @default.
- W3208888392 hasRelatedWork W2998168123 @default.
- W3208888392 hasRelatedWork W3165463024 @default.