Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208903179> ?p ?o ?g. }
- W3208903179 abstract "Machine learning applications have gained popularity over the years as more advanced algorithms like the deep learning (DL) algorithm are being employed in signal identification, classification and detection of cracks or faults in structures. The DL algorithm has broader applications compared to other machine learning systems and it is a creative algorithm capable of processing data, creating pattern, interpreting information due to its high level of accuracy in pattern recognition under stochastic conditions. This research gives an exposition of DL in diverse areas of operations with a focus on plant weed detection which is inspired by the need to treat a specific class of weed with a particular herbicide. A Convolutional Neural Network (CNN) model was trained through transfer learning on a pre-trained ResNet50 model and the performance was evaluated using a random forest (RF) classifier, the trained model was deployed on a raspberry pi for prediction of the test data. Training accuracies of 99% and 93% were obtained for the CNN and RF classifier respectively. Some recommendations have been proffered to improve inference time such as the use of better embedded systems such as the Nvidia Jetson TX2, synchronizing DL hardware accelerators with appropriate optimization techniques. A prospect of this work would be to incorporate an embedded system, deployed with DL algorithms, on an unmanned aerial vehicle or ground vehicle. Overall, it is revealed from this study that DL is highly efficient in every sector and can improve the accuracy on automatic detection of systems in especially in this era of Industry 4.0." @default.
- W3208903179 created "2021-11-08" @default.
- W3208903179 creator A5047654500 @default.
- W3208903179 creator A5057227579 @default.
- W3208903179 creator A5062342887 @default.
- W3208903179 creator A5083985681 @default.
- W3208903179 date "2021-12-09" @default.
- W3208903179 modified "2023-10-16" @default.
- W3208903179 title "Deep learning application in diverse fields with plant weed detection as a case study" @default.
- W3208903179 cites W1964155876 @default.
- W3208903179 cites W2010036662 @default.
- W3208903179 cites W2076462394 @default.
- W3208903179 cites W2097117768 @default.
- W3208903179 cites W2155893237 @default.
- W3208903179 cites W2194775991 @default.
- W3208903179 cites W2533835508 @default.
- W3208903179 cites W2565516711 @default.
- W3208903179 cites W2613076705 @default.
- W3208903179 cites W2750384459 @default.
- W3208903179 cites W2750506686 @default.
- W3208903179 cites W2751354647 @default.
- W3208903179 cites W2766060296 @default.
- W3208903179 cites W2767767563 @default.
- W3208903179 cites W2769984510 @default.
- W3208903179 cites W2784123366 @default.
- W3208903179 cites W2789255992 @default.
- W3208903179 cites W2790097716 @default.
- W3208903179 cites W2791067302 @default.
- W3208903179 cites W2791521493 @default.
- W3208903179 cites W2794492243 @default.
- W3208903179 cites W2809817009 @default.
- W3208903179 cites W2883142087 @default.
- W3208903179 cites W2887332304 @default.
- W3208903179 cites W2888100907 @default.
- W3208903179 cites W2889109290 @default.
- W3208903179 cites W2910093290 @default.
- W3208903179 cites W2911132372 @default.
- W3208903179 cites W2920872036 @default.
- W3208903179 cites W2921403460 @default.
- W3208903179 cites W2942231644 @default.
- W3208903179 cites W2946053491 @default.
- W3208903179 cites W2963437853 @default.
- W3208903179 cites W2964236337 @default.
- W3208903179 cites W2964248614 @default.
- W3208903179 cites W2964614447 @default.
- W3208903179 cites W2972812366 @default.
- W3208903179 cites W2982213159 @default.
- W3208903179 cites W2996262564 @default.
- W3208903179 cites W2998179457 @default.
- W3208903179 cites W3000094279 @default.
- W3208903179 cites W3004442222 @default.
- W3208903179 cites W3013126924 @default.
- W3208903179 cites W3082594717 @default.
- W3208903179 cites W3090027660 @default.
- W3208903179 cites W3176291700 @default.
- W3208903179 doi "https://doi.org/10.1145/3487923.3487926" @default.
- W3208903179 hasPublicationYear "2021" @default.
- W3208903179 type Work @default.
- W3208903179 sameAs 3208903179 @default.
- W3208903179 citedByCount "2" @default.
- W3208903179 countsByYear W32089031792022 @default.
- W3208903179 crossrefType "proceedings-article" @default.
- W3208903179 hasAuthorship W3208903179A5047654500 @default.
- W3208903179 hasAuthorship W3208903179A5057227579 @default.
- W3208903179 hasAuthorship W3208903179A5062342887 @default.
- W3208903179 hasAuthorship W3208903179A5083985681 @default.
- W3208903179 hasBestOaLocation W32089031791 @default.
- W3208903179 hasConcept C108583219 @default.
- W3208903179 hasConcept C119857082 @default.
- W3208903179 hasConcept C150899416 @default.
- W3208903179 hasConcept C154945302 @default.
- W3208903179 hasConcept C162932704 @default.
- W3208903179 hasConcept C169258074 @default.
- W3208903179 hasConcept C41008148 @default.
- W3208903179 hasConcept C761482 @default.
- W3208903179 hasConcept C76155785 @default.
- W3208903179 hasConcept C81363708 @default.
- W3208903179 hasConcept C95623464 @default.
- W3208903179 hasConceptScore W3208903179C108583219 @default.
- W3208903179 hasConceptScore W3208903179C119857082 @default.
- W3208903179 hasConceptScore W3208903179C150899416 @default.
- W3208903179 hasConceptScore W3208903179C154945302 @default.
- W3208903179 hasConceptScore W3208903179C162932704 @default.
- W3208903179 hasConceptScore W3208903179C169258074 @default.
- W3208903179 hasConceptScore W3208903179C41008148 @default.
- W3208903179 hasConceptScore W3208903179C761482 @default.
- W3208903179 hasConceptScore W3208903179C76155785 @default.
- W3208903179 hasConceptScore W3208903179C81363708 @default.
- W3208903179 hasConceptScore W3208903179C95623464 @default.
- W3208903179 hasLocation W32089031791 @default.
- W3208903179 hasOpenAccess W3208903179 @default.
- W3208903179 hasPrimaryLocation W32089031791 @default.
- W3208903179 hasRelatedWork W2997709384 @default.
- W3208903179 hasRelatedWork W3091976719 @default.
- W3208903179 hasRelatedWork W3166467183 @default.
- W3208903179 hasRelatedWork W3189091156 @default.
- W3208903179 hasRelatedWork W3192840557 @default.
- W3208903179 hasRelatedWork W4220996320 @default.
- W3208903179 hasRelatedWork W4313289428 @default.
- W3208903179 hasRelatedWork W4322727400 @default.