Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208906557> ?p ?o ?g. }
- W3208906557 abstract "Biometric recognition based on the full face is an extensive research area. However, using only partially visible faces, such as in the case of veiled-persons, is a challenging task. Deep convolutional neural network (CNN) is used in this work to extract the features from veiled-person face images. We found that the sixth and the seventh fully connected layers, FC6 and FC7 respectively, in the structure of the VGG19 network provide robust features with each of these two layers containing 4096 features. The main objective of this work is to test the ability of deep learning based automated computer system to identify not only persons, but also to perform recognition of gender, age, and facial expressions such as eye smile. Our experimental results indicate that we obtain high accuracy for all the tasks. The best recorded accuracy values are up to 99.95% for identifying persons, 99.9% for gender recognition, 99.9% for age recognition and 80.9% for facial expression (eye smile) recognition." @default.
- W3208906557 created "2021-11-08" @default.
- W3208906557 creator A5002859666 @default.
- W3208906557 creator A5003230594 @default.
- W3208906557 creator A5026258256 @default.
- W3208906557 creator A5032563975 @default.
- W3208906557 creator A5064783067 @default.
- W3208906557 creator A5070324443 @default.
- W3208906557 creator A5072037711 @default.
- W3208906557 creator A5074589101 @default.
- W3208906557 creator A5089788790 @default.
- W3208906557 date "2021-11-02" @default.
- W3208906557 modified "2023-09-27" @default.
- W3208906557 title "Deep learning for identification and face, gender, expression recognition under constraints." @default.
- W3208906557 cites W1503762774 @default.
- W3208906557 cites W1525332840 @default.
- W3208906557 cites W1545425562 @default.
- W3208906557 cites W1545641654 @default.
- W3208906557 cites W1570448133 @default.
- W3208906557 cites W1686810756 @default.
- W3208906557 cites W1870428853 @default.
- W3208906557 cites W1905153633 @default.
- W3208906557 cites W1921225315 @default.
- W3208906557 cites W1967461346 @default.
- W3208906557 cites W1970456555 @default.
- W3208906557 cites W1970942140 @default.
- W3208906557 cites W1974210421 @default.
- W3208906557 cites W1989702938 @default.
- W3208906557 cites W1998808035 @default.
- W3208906557 cites W2040013760 @default.
- W3208906557 cites W2076647582 @default.
- W3208906557 cites W2090795098 @default.
- W3208906557 cites W2090922444 @default.
- W3208906557 cites W2108598243 @default.
- W3208906557 cites W2125097298 @default.
- W3208906557 cites W2129000824 @default.
- W3208906557 cites W2140609507 @default.
- W3208906557 cites W2155511299 @default.
- W3208906557 cites W2184356410 @default.
- W3208906557 cites W2244142460 @default.
- W3208906557 cites W2246249023 @default.
- W3208906557 cites W2333255105 @default.
- W3208906557 cites W2510725918 @default.
- W3208906557 cites W2532682818 @default.
- W3208906557 cites W2533731162 @default.
- W3208906557 cites W2536632192 @default.
- W3208906557 cites W2585123518 @default.
- W3208906557 cites W2768042414 @default.
- W3208906557 cites W2768778227 @default.
- W3208906557 cites W2792196801 @default.
- W3208906557 cites W2801096891 @default.
- W3208906557 cites W2803396742 @default.
- W3208906557 cites W2805194238 @default.
- W3208906557 cites W2893682050 @default.
- W3208906557 cites W2897450186 @default.
- W3208906557 cites W2898051438 @default.
- W3208906557 cites W2899254051 @default.
- W3208906557 cites W2919115771 @default.
- W3208906557 cites W2946108305 @default.
- W3208906557 cites W2963377935 @default.
- W3208906557 cites W2966207845 @default.
- W3208906557 cites W2969398210 @default.
- W3208906557 cites W3008249145 @default.
- W3208906557 cites W3013276295 @default.
- W3208906557 cites W3034302825 @default.
- W3208906557 cites W3035693354 @default.
- W3208906557 cites W3094438681 @default.
- W3208906557 cites W3096495801 @default.
- W3208906557 cites W3102532295 @default.
- W3208906557 cites W1836656895 @default.
- W3208906557 hasPublicationYear "2021" @default.
- W3208906557 type Work @default.
- W3208906557 sameAs 3208906557 @default.
- W3208906557 citedByCount "0" @default.
- W3208906557 crossrefType "posted-content" @default.
- W3208906557 hasAuthorship W3208906557A5002859666 @default.
- W3208906557 hasAuthorship W3208906557A5003230594 @default.
- W3208906557 hasAuthorship W3208906557A5026258256 @default.
- W3208906557 hasAuthorship W3208906557A5032563975 @default.
- W3208906557 hasAuthorship W3208906557A5064783067 @default.
- W3208906557 hasAuthorship W3208906557A5070324443 @default.
- W3208906557 hasAuthorship W3208906557A5072037711 @default.
- W3208906557 hasAuthorship W3208906557A5074589101 @default.
- W3208906557 hasAuthorship W3208906557A5089788790 @default.
- W3208906557 hasConcept C108583219 @default.
- W3208906557 hasConcept C116834253 @default.
- W3208906557 hasConcept C127413603 @default.
- W3208906557 hasConcept C144024400 @default.
- W3208906557 hasConcept C153180895 @default.
- W3208906557 hasConcept C154945302 @default.
- W3208906557 hasConcept C184297639 @default.
- W3208906557 hasConcept C195704467 @default.
- W3208906557 hasConcept C199360897 @default.
- W3208906557 hasConcept C201995342 @default.
- W3208906557 hasConcept C2779304628 @default.
- W3208906557 hasConcept C2780451532 @default.
- W3208906557 hasConcept C28490314 @default.
- W3208906557 hasConcept C2987714656 @default.
- W3208906557 hasConcept C31510193 @default.
- W3208906557 hasConcept C36289849 @default.