Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208906812> ?p ?o ?g. }
- W3208906812 endingPage "7254" @default.
- W3208906812 startingPage "7254" @default.
- W3208906812 abstract "This work aims to model the combined cycle power plant (CCPP) using different algorithms. The algorithms used are Ridge, Linear regressor (LR), and upport vector regressor (SVR). The CCPP energy output data collected as a factor of thermal input variables, mainly exhaust vacuum, ambient temperature, relative humidity, and ambient pressure. Initially, the Ridge algorithm-based modeling is performed in detail, and then SVR-based LR, named as SVR (LR), SVR-based radial basis function—SVR (RBF), and SVR-based polynomial regression—SVR (Poly.) algorithms, are applied. Mean absolute error (MAE), R-squared (R2), median absolute error (MeAE), mean absolute percentage error (MAPE), and mean Poisson deviance (MPD) are assessed after their training and testing of each algorithm. From the modeling of energy output data, it is seen that SVR (RBF) is the most suitable in providing very close predictions compared to other algorithms. SVR (RBF) training R2 obtained is 0.98 while all others were 0.9–0.92. The testing predictions made by SVR (RBF), Ridge, and RidgeCV are nearly the same, i.e., R2 is 0.92. It is concluded that these algorithms are suitable for predicting sensitive output energy data of a CCPP depending on thermal input variables." @default.
- W3208906812 created "2021-11-08" @default.
- W3208906812 creator A5007181607 @default.
- W3208906812 creator A5027734730 @default.
- W3208906812 creator A5034555076 @default.
- W3208906812 creator A5042376108 @default.
- W3208906812 creator A5090701384 @default.
- W3208906812 date "2021-11-03" @default.
- W3208906812 modified "2023-09-26" @default.
- W3208906812 title "Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms" @default.
- W3208906812 cites W1969248332 @default.
- W3208906812 cites W1991420715 @default.
- W3208906812 cites W1997151153 @default.
- W3208906812 cites W1999185924 @default.
- W3208906812 cites W2000164913 @default.
- W3208906812 cites W2034054122 @default.
- W3208906812 cites W2047159855 @default.
- W3208906812 cites W2049622828 @default.
- W3208906812 cites W2064769840 @default.
- W3208906812 cites W2070090278 @default.
- W3208906812 cites W2079917809 @default.
- W3208906812 cites W2080822545 @default.
- W3208906812 cites W2080924928 @default.
- W3208906812 cites W2085008468 @default.
- W3208906812 cites W2089955789 @default.
- W3208906812 cites W2109302642 @default.
- W3208906812 cites W2109762852 @default.
- W3208906812 cites W2114234756 @default.
- W3208906812 cites W2116349459 @default.
- W3208906812 cites W2128731188 @default.
- W3208906812 cites W2291118988 @default.
- W3208906812 cites W2606719893 @default.
- W3208906812 cites W2734775479 @default.
- W3208906812 cites W2753008902 @default.
- W3208906812 cites W2779340001 @default.
- W3208906812 cites W2792138461 @default.
- W3208906812 cites W2879437234 @default.
- W3208906812 cites W2885212170 @default.
- W3208906812 cites W2905217250 @default.
- W3208906812 cites W2907866659 @default.
- W3208906812 cites W2978261481 @default.
- W3208906812 cites W2984841888 @default.
- W3208906812 cites W2990320224 @default.
- W3208906812 cites W3008014318 @default.
- W3208906812 cites W3012378843 @default.
- W3208906812 cites W3080515263 @default.
- W3208906812 cites W3088542900 @default.
- W3208906812 cites W3091529505 @default.
- W3208906812 cites W3096987333 @default.
- W3208906812 cites W3110183245 @default.
- W3208906812 cites W3128392526 @default.
- W3208906812 cites W3139816945 @default.
- W3208906812 cites W3163404072 @default.
- W3208906812 cites W3173215741 @default.
- W3208906812 doi "https://doi.org/10.3390/en14217254" @default.
- W3208906812 hasPublicationYear "2021" @default.
- W3208906812 type Work @default.
- W3208906812 sameAs 3208906812 @default.
- W3208906812 citedByCount "27" @default.
- W3208906812 countsByYear W32089068122021 @default.
- W3208906812 countsByYear W32089068122022 @default.
- W3208906812 countsByYear W32089068122023 @default.
- W3208906812 crossrefType "journal-article" @default.
- W3208906812 hasAuthorship W3208906812A5007181607 @default.
- W3208906812 hasAuthorship W3208906812A5027734730 @default.
- W3208906812 hasAuthorship W3208906812A5034555076 @default.
- W3208906812 hasAuthorship W3208906812A5042376108 @default.
- W3208906812 hasAuthorship W3208906812A5090701384 @default.
- W3208906812 hasBestOaLocation W32089068121 @default.
- W3208906812 hasConcept C105795698 @default.
- W3208906812 hasConcept C11413529 @default.
- W3208906812 hasConcept C119857082 @default.
- W3208906812 hasConcept C12267149 @default.
- W3208906812 hasConcept C139945424 @default.
- W3208906812 hasConcept C150217764 @default.
- W3208906812 hasConcept C33923547 @default.
- W3208906812 hasConcept C41008148 @default.
- W3208906812 hasConceptScore W3208906812C105795698 @default.
- W3208906812 hasConceptScore W3208906812C11413529 @default.
- W3208906812 hasConceptScore W3208906812C119857082 @default.
- W3208906812 hasConceptScore W3208906812C12267149 @default.
- W3208906812 hasConceptScore W3208906812C139945424 @default.
- W3208906812 hasConceptScore W3208906812C150217764 @default.
- W3208906812 hasConceptScore W3208906812C33923547 @default.
- W3208906812 hasConceptScore W3208906812C41008148 @default.
- W3208906812 hasIssue "21" @default.
- W3208906812 hasLocation W32089068121 @default.
- W3208906812 hasLocation W32089068122 @default.
- W3208906812 hasLocation W32089068123 @default.
- W3208906812 hasOpenAccess W3208906812 @default.
- W3208906812 hasPrimaryLocation W32089068121 @default.
- W3208906812 hasRelatedWork W2008453766 @default.
- W3208906812 hasRelatedWork W2023904223 @default.
- W3208906812 hasRelatedWork W2145613766 @default.
- W3208906812 hasRelatedWork W2234588804 @default.
- W3208906812 hasRelatedWork W2625413331 @default.
- W3208906812 hasRelatedWork W2963766945 @default.
- W3208906812 hasRelatedWork W3040727014 @default.