Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208908984> ?p ?o ?g. }
- W3208908984 endingPage "100678" @default.
- W3208908984 startingPage "100678" @default.
- W3208908984 abstract "This study proposes a high-performance machine learning model to sidestep the time of conducting actual laboratory tests of soil compression index (Cc), one of the important criteria for determining the settlement of subgrade layers of roadways, railways, and airport runways. The suggested method combines the modified equilibrium optimizer (MEO) and the extreme learning machine (ELM) in a novel way. In this study, Gaussian mutation with an exploratory search mechanism was incorporated to construct the MEO and used to enhance the performance of conventional ELM by optimizing its learning parameters. PCA (Principal component analysis)-based results exhibit that the developed ELM-MEO attained the most precise prediction with R2 = 0.9746, MAE = 0.0184, and RMSE = 0.0284 in training, and R2 = 0.9599, MAE = 0.0232, and RMSE = 0.0357 in the testing phase. The results showed that the proposed ELM-MEO model outperformed the other developed models, confirming the ELM-MEO model's superiority over the other models, such as random forest, gradient boosting machine, genetic programming, including the ELM and artificial neural network (ANN)-based models optimized with equilibrium optimizer, particle swarm optimization, Harris hawks optimization, slime mould algorithm, and marine predators algorithm. Based on the experimental results, the proposed ELM-MEO can be used as a promising alternative to predict soil Cc in civil engineering projects, including rail and road projects." @default.
- W3208908984 created "2021-11-08" @default.
- W3208908984 creator A5009051563 @default.
- W3208908984 creator A5016313494 @default.
- W3208908984 creator A5059040421 @default.
- W3208908984 creator A5064414390 @default.
- W3208908984 creator A5079371531 @default.
- W3208908984 date "2022-01-01" @default.
- W3208908984 modified "2023-10-01" @default.
- W3208908984 title "A novel integrated approach of ELM and modified equilibrium optimizer for predicting soil compression index of subgrade layer of Dedicated Freight Corridor" @default.
- W3208908984 cites W193809727 @default.
- W3208908984 cites W1973507704 @default.
- W3208908984 cites W1985479415 @default.
- W3208908984 cites W1999978517 @default.
- W3208908984 cites W2002536914 @default.
- W3208908984 cites W2004941813 @default.
- W3208908984 cites W2005591184 @default.
- W3208908984 cites W2014891611 @default.
- W3208908984 cites W2024323199 @default.
- W3208908984 cites W2028737174 @default.
- W3208908984 cites W2032259885 @default.
- W3208908984 cites W2037842564 @default.
- W3208908984 cites W2047308867 @default.
- W3208908984 cites W2047898003 @default.
- W3208908984 cites W2053780480 @default.
- W3208908984 cites W2062634819 @default.
- W3208908984 cites W2066309818 @default.
- W3208908984 cites W2074144508 @default.
- W3208908984 cites W2087994906 @default.
- W3208908984 cites W2094126713 @default.
- W3208908984 cites W2101881769 @default.
- W3208908984 cites W2104451122 @default.
- W3208908984 cites W2111072639 @default.
- W3208908984 cites W2115462529 @default.
- W3208908984 cites W2129537185 @default.
- W3208908984 cites W2139363524 @default.
- W3208908984 cites W2154613443 @default.
- W3208908984 cites W2296707026 @default.
- W3208908984 cites W2343377801 @default.
- W3208908984 cites W2427322446 @default.
- W3208908984 cites W2464769914 @default.
- W3208908984 cites W2501171284 @default.
- W3208908984 cites W2534925664 @default.
- W3208908984 cites W2587345921 @default.
- W3208908984 cites W2617638177 @default.
- W3208908984 cites W2789477383 @default.
- W3208908984 cites W2791778019 @default.
- W3208908984 cites W2797135164 @default.
- W3208908984 cites W2800952306 @default.
- W3208908984 cites W2807821935 @default.
- W3208908984 cites W2895224823 @default.
- W3208908984 cites W2897768203 @default.
- W3208908984 cites W2901725374 @default.
- W3208908984 cites W2902421512 @default.
- W3208908984 cites W2903658881 @default.
- W3208908984 cites W2912668578 @default.
- W3208908984 cites W2913340792 @default.
- W3208908984 cites W2919979744 @default.
- W3208908984 cites W2922451909 @default.
- W3208908984 cites W2924345091 @default.
- W3208908984 cites W2938886060 @default.
- W3208908984 cites W2946148730 @default.
- W3208908984 cites W2946990285 @default.
- W3208908984 cites W2954464033 @default.
- W3208908984 cites W2964107296 @default.
- W3208908984 cites W2980539464 @default.
- W3208908984 cites W2980667597 @default.
- W3208908984 cites W2985845430 @default.
- W3208908984 cites W2993243199 @default.
- W3208908984 cites W2995993097 @default.
- W3208908984 cites W2999979614 @default.
- W3208908984 cites W3007907254 @default.
- W3208908984 cites W3011104345 @default.
- W3208908984 cites W3014974411 @default.
- W3208908984 cites W3016060324 @default.
- W3208908984 cites W3016685110 @default.
- W3208908984 cites W3037353446 @default.
- W3208908984 cites W3042690205 @default.
- W3208908984 cites W3044434476 @default.
- W3208908984 cites W3044546013 @default.
- W3208908984 cites W3046463181 @default.
- W3208908984 cites W3083389769 @default.
- W3208908984 cites W3096542451 @default.
- W3208908984 cites W3096616939 @default.
- W3208908984 cites W3114296031 @default.
- W3208908984 cites W3159941795 @default.
- W3208908984 cites W3169729507 @default.
- W3208908984 cites W3170031864 @default.
- W3208908984 cites W3170791422 @default.
- W3208908984 cites W3174387955 @default.
- W3208908984 cites W3177406984 @default.
- W3208908984 cites W3196151121 @default.
- W3208908984 cites W4255316375 @default.
- W3208908984 cites W756015493 @default.
- W3208908984 doi "https://doi.org/10.1016/j.trgeo.2021.100678" @default.
- W3208908984 hasPublicationYear "2022" @default.
- W3208908984 type Work @default.
- W3208908984 sameAs 3208908984 @default.