Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208932511> ?p ?o ?g. }
- W3208932511 endingPage "111748" @default.
- W3208932511 startingPage "111748" @default.
- W3208932511 abstract "Machine learning through artificial neural networks have emerged as vital tools to predict chemical behavior for many of the most recognized biomass valorization processes relevant to biorefineries for the purpose of optimization of desired products and reaction conditions. Until recently, these neural network methodologies have successfully been utilized in the petroleum industry where much more extensive databases are available for effective algorithm training. These systems provide compelling advantages for pattern recognition when interpreting the influence of ever-changing feedstock compositions for complex biomass conversion processes as they do not require any a prior knowledge of reaction mechanisms or thermodynamic phenomena. This has been revealed to be tremendously beneficial for real-time, dynamic control applications of biochemical processes for rapid parameter monitoring and regulation such as during fermentation or anaerobic digestion. This review aims to present and evaluate studies that have attempted to apply these neural network strategies to various aspects of biorefining and how these models address the common challenges that occur when relying on conventional mechanistic modelling approaches to estimate sophisticated, non-linear systems. Comparisons are then identified when implementing these artificial intelligence computing practices in traditional petroleum refineries where feedstock inconsistencies are not as paramount compared to biorefineries. Subsequently, the practicality of these neural networks is critically assessed and recommendations are presented on how to strengthen its applicability and predictability towards future bio-based chemical production. Mathematical models such as artificial neural networks will be an integral technology in the future bioeconomy for the realization of innovative biorefinery concepts as computational power continues to advance." @default.
- W3208932511 created "2021-11-08" @default.
- W3208932511 creator A5015913196 @default.
- W3208932511 creator A5034183968 @default.
- W3208932511 creator A5057969880 @default.
- W3208932511 date "2022-01-01" @default.
- W3208932511 modified "2023-10-02" @default.
- W3208932511 title "Artificial neural networks for bio-based chemical production or biorefining: A review" @default.
- W3208932511 cites W110524478 @default.
- W3208932511 cites W1789244143 @default.
- W3208932511 cites W1890991889 @default.
- W3208932511 cites W1923425159 @default.
- W3208932511 cites W1924521656 @default.
- W3208932511 cites W1965667065 @default.
- W3208932511 cites W1968595844 @default.
- W3208932511 cites W1981735596 @default.
- W3208932511 cites W1985715605 @default.
- W3208932511 cites W1987739446 @default.
- W3208932511 cites W1996039992 @default.
- W3208932511 cites W1996615575 @default.
- W3208932511 cites W1998321859 @default.
- W3208932511 cites W2003591573 @default.
- W3208932511 cites W2004443860 @default.
- W3208932511 cites W2005463202 @default.
- W3208932511 cites W2021486592 @default.
- W3208932511 cites W2025770802 @default.
- W3208932511 cites W2029095948 @default.
- W3208932511 cites W2034855563 @default.
- W3208932511 cites W2042535339 @default.
- W3208932511 cites W2047460307 @default.
- W3208932511 cites W2048224752 @default.
- W3208932511 cites W2052237434 @default.
- W3208932511 cites W2065379200 @default.
- W3208932511 cites W2071227435 @default.
- W3208932511 cites W2071475089 @default.
- W3208932511 cites W2071838482 @default.
- W3208932511 cites W2074716130 @default.
- W3208932511 cites W2076209153 @default.
- W3208932511 cites W2078803435 @default.
- W3208932511 cites W2085421387 @default.
- W3208932511 cites W2088600910 @default.
- W3208932511 cites W2093170330 @default.
- W3208932511 cites W2095573523 @default.
- W3208932511 cites W2112621676 @default.
- W3208932511 cites W2122782494 @default.
- W3208932511 cites W2123612432 @default.
- W3208932511 cites W2133606615 @default.
- W3208932511 cites W2164623799 @default.
- W3208932511 cites W2221063105 @default.
- W3208932511 cites W2255363148 @default.
- W3208932511 cites W2294163318 @default.
- W3208932511 cites W2301763428 @default.
- W3208932511 cites W2309320825 @default.
- W3208932511 cites W2314135590 @default.
- W3208932511 cites W2334755930 @default.
- W3208932511 cites W2335413730 @default.
- W3208932511 cites W2344470570 @default.
- W3208932511 cites W2350554061 @default.
- W3208932511 cites W2506935491 @default.
- W3208932511 cites W2520238044 @default.
- W3208932511 cites W2534810046 @default.
- W3208932511 cites W2562312418 @default.
- W3208932511 cites W2564667983 @default.
- W3208932511 cites W2586863128 @default.
- W3208932511 cites W2592270600 @default.
- W3208932511 cites W2594096950 @default.
- W3208932511 cites W2594785029 @default.
- W3208932511 cites W2613690582 @default.
- W3208932511 cites W2617653980 @default.
- W3208932511 cites W2736115389 @default.
- W3208932511 cites W2752532721 @default.
- W3208932511 cites W2753096181 @default.
- W3208932511 cites W2785397012 @default.
- W3208932511 cites W2791342618 @default.
- W3208932511 cites W2791821150 @default.
- W3208932511 cites W2793435206 @default.
- W3208932511 cites W2794657484 @default.
- W3208932511 cites W2883350994 @default.
- W3208932511 cites W2884537139 @default.
- W3208932511 cites W2889360841 @default.
- W3208932511 cites W2898345915 @default.
- W3208932511 cites W2899382223 @default.
- W3208932511 cites W2906280025 @default.
- W3208932511 cites W2908546902 @default.
- W3208932511 cites W2912415017 @default.
- W3208932511 cites W2918604648 @default.
- W3208932511 cites W2924500928 @default.
- W3208932511 cites W2944373412 @default.
- W3208932511 cites W2947495040 @default.
- W3208932511 cites W2947966492 @default.
- W3208932511 cites W2955280242 @default.
- W3208932511 cites W2969343193 @default.
- W3208932511 cites W2981697369 @default.
- W3208932511 cites W3003543471 @default.
- W3208932511 cites W3005981312 @default.
- W3208932511 cites W3010616240 @default.
- W3208932511 cites W3011754594 @default.
- W3208932511 cites W3040229085 @default.