Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208936751> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3208936751 abstract "A novel hybrid Autoregressive Distributed Lag Mixed Data Sampling (ARDL-MIDAS) model is developed that integrates a combination of both deep neural network multi-head attention Transformer mechanisms and sophisticated stochastic text time-series feature and covariate constructions into a mixed-frequency time-series regression model that incorporates long memory structure. The resulting class of ARDL-MIDAS-Transformer models allows one to maintain the interpretability of the time-series models whilst exploiting the deep neural network attention architectures for higher-order interaction analysis, or, as in our use case, for design of Instrumental Variables to reduce bias in the estimation of the infinite lag ARDL-MIDAS model.In this regard, a statistical time-series analysis on mixed data frequencies is undertaken to discover the relationship between various sentiment extraction frameworks, technology factors, and the role that price discovery has on retail cryptocurrency sentiment (crypto sentiment). This is an interesting time-series modelling challenge as it involves working with time-series regression models in which the time-series response process, and the regression time-series covariates, are observed at different time scales. The sentiment indices constructed for a variety of topics and news sources are produced as a collection of time-series capturing the daily sentiment polarity signals for each ``topic'', namely each particular market or crypto asset. Different sentiment methods are developed in a time-series context, and utilised in the proposed hybrid regression framework.In terms of modelling, both ARDL models within the infinite-lag Koyck transform model family, and a MIDAS regression model with a Gegenbauer long memory structure are combined to produce a novel class of infinite-lag, long memory MIDAS model time-series regression structure. This joint model is further enhanced with the higher-order feature extraction methods of BERT and VADER.In addition to the proposed modelling methodology, a detailed real data study is conducted to explore the relationship between daily crypto market sentiment (positive, negative and neutral polarity) and intra-daily (hourly) price log-return dynamics of crypto markets. Furthermore, technology time-series factors are introduced to capture network effects, such as the hash rate which is an important aspect of money supply relating to mining of new crypto assets, and block hashing for transaction verification." @default.
- W3208936751 created "2021-11-08" @default.
- W3208936751 creator A5066722006 @default.
- W3208936751 creator A5085037678 @default.
- W3208936751 creator A5087616647 @default.
- W3208936751 date "2021-01-01" @default.
- W3208936751 modified "2023-09-24" @default.
- W3208936751 title "Hybrid ARDL-MIDAS-Transformer Time-Series Regressions for Multi-Topic Crypto Market Sentiment Driven by Price and Technology Factors" @default.
- W3208936751 cites W129305155 @default.
- W3208936751 cites W1588163064 @default.
- W3208936751 cites W2011755079 @default.
- W3208936751 cites W2059787748 @default.
- W3208936751 cites W2064197159 @default.
- W3208936751 cites W2092282406 @default.
- W3208936751 cites W2099813784 @default.
- W3208936751 cites W2142635246 @default.
- W3208936751 cites W2155963925 @default.
- W3208936751 cites W2160270152 @default.
- W3208936751 cites W2161429633 @default.
- W3208936751 cites W2250539671 @default.
- W3208936751 cites W2335048465 @default.
- W3208936751 cites W2612769033 @default.
- W3208936751 cites W2768880357 @default.
- W3208936751 cites W2951044827 @default.
- W3208936751 cites W3122091423 @default.
- W3208936751 cites W3125188797 @default.
- W3208936751 cites W3125263362 @default.
- W3208936751 cites W3125952890 @default.
- W3208936751 cites W3163179326 @default.
- W3208936751 cites W4236030294 @default.
- W3208936751 doi "https://doi.org/10.2139/ssrn.3908066" @default.
- W3208936751 hasPublicationYear "2021" @default.
- W3208936751 type Work @default.
- W3208936751 sameAs 3208936751 @default.
- W3208936751 citedByCount "0" @default.
- W3208936751 crossrefType "journal-article" @default.
- W3208936751 hasAuthorship W3208936751A5066722006 @default.
- W3208936751 hasAuthorship W3208936751A5085037678 @default.
- W3208936751 hasAuthorship W3208936751A5087616647 @default.
- W3208936751 hasConcept C119857082 @default.
- W3208936751 hasConcept C149782125 @default.
- W3208936751 hasConcept C151406439 @default.
- W3208936751 hasConcept C162324750 @default.
- W3208936751 hasConcept C41008148 @default.
- W3208936751 hasConceptScore W3208936751C119857082 @default.
- W3208936751 hasConceptScore W3208936751C149782125 @default.
- W3208936751 hasConceptScore W3208936751C151406439 @default.
- W3208936751 hasConceptScore W3208936751C162324750 @default.
- W3208936751 hasConceptScore W3208936751C41008148 @default.
- W3208936751 hasLocation W32089367511 @default.
- W3208936751 hasOpenAccess W3208936751 @default.
- W3208936751 hasPrimaryLocation W32089367511 @default.
- W3208936751 hasRelatedWork W1522504334 @default.
- W3208936751 hasRelatedWork W1973538245 @default.
- W3208936751 hasRelatedWork W2013444265 @default.
- W3208936751 hasRelatedWork W2030617584 @default.
- W3208936751 hasRelatedWork W2056210026 @default.
- W3208936751 hasRelatedWork W2161519270 @default.
- W3208936751 hasRelatedWork W2899084033 @default.
- W3208936751 hasRelatedWork W3149328373 @default.
- W3208936751 hasRelatedWork W331667891 @default.
- W3208936751 hasRelatedWork W2142213187 @default.
- W3208936751 isParatext "false" @default.
- W3208936751 isRetracted "false" @default.
- W3208936751 magId "3208936751" @default.
- W3208936751 workType "article" @default.