Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208939211> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3208939211 endingPage "141" @default.
- W3208939211 startingPage "141" @default.
- W3208939211 abstract "Decision-making plays an essential role in the management and may represent the most important component in the planning process. Employee attrition is considered a well-known problem that needs the right decisions from the administration to preserve high qualified employees. Interestingly, artificial intelligence is utilized extensively as an efficient tool for predicting such a problem. The proposed work utilizes the deep learning technique along with some preprocessing steps to improve the prediction of employee attrition. Several factors lead to employee attrition. Such factors are analyzed to reveal their intercorrelation and to demonstrate the dominant ones. Our work was tested using the imbalanced dataset of IBM analytics, which contains 35 features for 1470 employees. To get realistic results, we derived a balanced version from the original one. Finally, cross-validation is implemented to evaluate our work precisely. Extensive experiments have been conducted to show the practical value of our work. The prediction accuracy using the original dataset is about 91%, whereas it is about 94% using a synthetic dataset." @default.
- W3208939211 created "2021-11-08" @default.
- W3208939211 creator A5000180026 @default.
- W3208939211 creator A5008118268 @default.
- W3208939211 creator A5011306308 @default.
- W3208939211 creator A5024200617 @default.
- W3208939211 creator A5043586484 @default.
- W3208939211 creator A5041749093 @default.
- W3208939211 date "2021-11-03" @default.
- W3208939211 modified "2023-10-16" @default.
- W3208939211 title "Employee Attrition Prediction Using Deep Neural Networks" @default.
- W3208939211 cites W1968383986 @default.
- W3208939211 cites W2796755741 @default.
- W3208939211 cites W2909056357 @default.
- W3208939211 cites W2934302500 @default.
- W3208939211 cites W3094796000 @default.
- W3208939211 cites W3095632750 @default.
- W3208939211 cites W3165907766 @default.
- W3208939211 doi "https://doi.org/10.3390/computers10110141" @default.
- W3208939211 hasPublicationYear "2021" @default.
- W3208939211 type Work @default.
- W3208939211 sameAs 3208939211 @default.
- W3208939211 citedByCount "8" @default.
- W3208939211 countsByYear W32089392112022 @default.
- W3208939211 countsByYear W32089392112023 @default.
- W3208939211 crossrefType "journal-article" @default.
- W3208939211 hasAuthorship W3208939211A5000180026 @default.
- W3208939211 hasAuthorship W3208939211A5008118268 @default.
- W3208939211 hasAuthorship W3208939211A5011306308 @default.
- W3208939211 hasAuthorship W3208939211A5024200617 @default.
- W3208939211 hasAuthorship W3208939211A5041749093 @default.
- W3208939211 hasAuthorship W3208939211A5043586484 @default.
- W3208939211 hasBestOaLocation W32089392111 @default.
- W3208939211 hasConcept C111919701 @default.
- W3208939211 hasConcept C119857082 @default.
- W3208939211 hasConcept C124101348 @default.
- W3208939211 hasConcept C127413603 @default.
- W3208939211 hasConcept C154945302 @default.
- W3208939211 hasConcept C171250308 @default.
- W3208939211 hasConcept C18762648 @default.
- W3208939211 hasConcept C192562407 @default.
- W3208939211 hasConcept C199343813 @default.
- W3208939211 hasConcept C2780553607 @default.
- W3208939211 hasConcept C34736171 @default.
- W3208939211 hasConcept C41008148 @default.
- W3208939211 hasConcept C50644808 @default.
- W3208939211 hasConcept C70388272 @default.
- W3208939211 hasConcept C71924100 @default.
- W3208939211 hasConcept C78519656 @default.
- W3208939211 hasConcept C79158427 @default.
- W3208939211 hasConcept C98045186 @default.
- W3208939211 hasConceptScore W3208939211C111919701 @default.
- W3208939211 hasConceptScore W3208939211C119857082 @default.
- W3208939211 hasConceptScore W3208939211C124101348 @default.
- W3208939211 hasConceptScore W3208939211C127413603 @default.
- W3208939211 hasConceptScore W3208939211C154945302 @default.
- W3208939211 hasConceptScore W3208939211C171250308 @default.
- W3208939211 hasConceptScore W3208939211C18762648 @default.
- W3208939211 hasConceptScore W3208939211C192562407 @default.
- W3208939211 hasConceptScore W3208939211C199343813 @default.
- W3208939211 hasConceptScore W3208939211C2780553607 @default.
- W3208939211 hasConceptScore W3208939211C34736171 @default.
- W3208939211 hasConceptScore W3208939211C41008148 @default.
- W3208939211 hasConceptScore W3208939211C50644808 @default.
- W3208939211 hasConceptScore W3208939211C70388272 @default.
- W3208939211 hasConceptScore W3208939211C71924100 @default.
- W3208939211 hasConceptScore W3208939211C78519656 @default.
- W3208939211 hasConceptScore W3208939211C79158427 @default.
- W3208939211 hasConceptScore W3208939211C98045186 @default.
- W3208939211 hasIssue "11" @default.
- W3208939211 hasLocation W32089392111 @default.
- W3208939211 hasLocation W32089392112 @default.
- W3208939211 hasOpenAccess W3208939211 @default.
- W3208939211 hasPrimaryLocation W32089392111 @default.
- W3208939211 hasRelatedWork W2382928216 @default.
- W3208939211 hasRelatedWork W2961085424 @default.
- W3208939211 hasRelatedWork W3094796000 @default.
- W3208939211 hasRelatedWork W3108729652 @default.
- W3208939211 hasRelatedWork W4285260836 @default.
- W3208939211 hasRelatedWork W4286629047 @default.
- W3208939211 hasRelatedWork W4306321456 @default.
- W3208939211 hasRelatedWork W4306674287 @default.
- W3208939211 hasRelatedWork W4352990909 @default.
- W3208939211 hasRelatedWork W4224009465 @default.
- W3208939211 hasVolume "10" @default.
- W3208939211 isParatext "false" @default.
- W3208939211 isRetracted "false" @default.
- W3208939211 magId "3208939211" @default.
- W3208939211 workType "article" @default.