Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208954293> ?p ?o ?g. }
- W3208954293 endingPage "1750" @default.
- W3208954293 startingPage "1729" @default.
- W3208954293 abstract "The evolution and expansion of IoT devices reduced human efforts, increased resource utilization, and saved time; however, IoT devices create significant challenges such as lack of security and privacy, making them more vulnerable to IoT-based botnet attacks. There is a need to develop efficient and faster models which can work in real-time with efficiency and stability. The present investigation developed two novels, Deep Neural Network (DNN) models, DNNBoT1 and DNNBoT2, to detect and classify well-known IoT botnet attacks such as Mirai and BASHLITE from nine compromised industrial-grade IoT devices. The utilization of PCA was made to feature extraction and improve effectual and accurate Botnet classification in IoT environments. The models were designed based on rigorous hyperparameters tuning with GridsearchCV. Early stopping was utilized to avoid the effects of overfitting and underfitting for both DNN models. The in-depth assessment and evaluation of the developed models demonstrated that accuracy and efficiency are some of the best-performed models. The novelty of the present investigation, with developed models, bridge the gaps by using a real dataset with high accuracy and a significantly lower false alarm rate. The results were evaluated based on earlier studies and deemed efficient at detecting botnet attacks using the real dataset." @default.
- W3208954293 created "2021-11-08" @default.
- W3208954293 creator A5020042595 @default.
- W3208954293 creator A5031798370 @default.
- W3208954293 creator A5037817322 @default.
- W3208954293 creator A5055907404 @default.
- W3208954293 creator A5063875355 @default.
- W3208954293 creator A5074405334 @default.
- W3208954293 creator A5079524430 @default.
- W3208954293 creator A5082884572 @default.
- W3208954293 date "2022-01-01" @default.
- W3208954293 modified "2023-10-18" @default.
- W3208954293 title "DNNBoT: Deep Neural Network-Based Botnet Detection and Classification" @default.
- W3208954293 cites W2077488147 @default.
- W3208954293 cites W2613920221 @default.
- W3208954293 cites W2768793959 @default.
- W3208954293 cites W2805462980 @default.
- W3208954293 cites W2929835212 @default.
- W3208954293 cites W2940371396 @default.
- W3208954293 cites W2950399464 @default.
- W3208954293 cites W2983270658 @default.
- W3208954293 cites W2988724480 @default.
- W3208954293 cites W3001364574 @default.
- W3208954293 cites W3001902713 @default.
- W3208954293 cites W3005147719 @default.
- W3208954293 cites W3005260862 @default.
- W3208954293 cites W3011624874 @default.
- W3208954293 cites W3016843594 @default.
- W3208954293 cites W3033675321 @default.
- W3208954293 cites W3122864121 @default.
- W3208954293 cites W3159151987 @default.
- W3208954293 doi "https://doi.org/10.32604/cmc.2022.020938" @default.
- W3208954293 hasPublicationYear "2022" @default.
- W3208954293 type Work @default.
- W3208954293 sameAs 3208954293 @default.
- W3208954293 citedByCount "14" @default.
- W3208954293 countsByYear W32089542932022 @default.
- W3208954293 countsByYear W32089542932023 @default.
- W3208954293 crossrefType "journal-article" @default.
- W3208954293 hasAuthorship W3208954293A5020042595 @default.
- W3208954293 hasAuthorship W3208954293A5031798370 @default.
- W3208954293 hasAuthorship W3208954293A5037817322 @default.
- W3208954293 hasAuthorship W3208954293A5055907404 @default.
- W3208954293 hasAuthorship W3208954293A5063875355 @default.
- W3208954293 hasAuthorship W3208954293A5074405334 @default.
- W3208954293 hasAuthorship W3208954293A5079524430 @default.
- W3208954293 hasAuthorship W3208954293A5082884572 @default.
- W3208954293 hasBestOaLocation W32089542931 @default.
- W3208954293 hasConcept C108583219 @default.
- W3208954293 hasConcept C110875604 @default.
- W3208954293 hasConcept C119857082 @default.
- W3208954293 hasConcept C124101348 @default.
- W3208954293 hasConcept C136764020 @default.
- W3208954293 hasConcept C138885662 @default.
- W3208954293 hasConcept C154945302 @default.
- W3208954293 hasConcept C22019652 @default.
- W3208954293 hasConcept C22735295 @default.
- W3208954293 hasConcept C27206212 @default.
- W3208954293 hasConcept C2778738651 @default.
- W3208954293 hasConcept C38652104 @default.
- W3208954293 hasConcept C41008148 @default.
- W3208954293 hasConcept C50644808 @default.
- W3208954293 hasConcept C541664917 @default.
- W3208954293 hasConcept C81860439 @default.
- W3208954293 hasConcept C8642999 @default.
- W3208954293 hasConceptScore W3208954293C108583219 @default.
- W3208954293 hasConceptScore W3208954293C110875604 @default.
- W3208954293 hasConceptScore W3208954293C119857082 @default.
- W3208954293 hasConceptScore W3208954293C124101348 @default.
- W3208954293 hasConceptScore W3208954293C136764020 @default.
- W3208954293 hasConceptScore W3208954293C138885662 @default.
- W3208954293 hasConceptScore W3208954293C154945302 @default.
- W3208954293 hasConceptScore W3208954293C22019652 @default.
- W3208954293 hasConceptScore W3208954293C22735295 @default.
- W3208954293 hasConceptScore W3208954293C27206212 @default.
- W3208954293 hasConceptScore W3208954293C2778738651 @default.
- W3208954293 hasConceptScore W3208954293C38652104 @default.
- W3208954293 hasConceptScore W3208954293C41008148 @default.
- W3208954293 hasConceptScore W3208954293C50644808 @default.
- W3208954293 hasConceptScore W3208954293C541664917 @default.
- W3208954293 hasConceptScore W3208954293C81860439 @default.
- W3208954293 hasConceptScore W3208954293C8642999 @default.
- W3208954293 hasIssue "1" @default.
- W3208954293 hasLocation W32089542931 @default.
- W3208954293 hasOpenAccess W3208954293 @default.
- W3208954293 hasPrimaryLocation W32089542931 @default.
- W3208954293 hasRelatedWork W2942650110 @default.
- W3208954293 hasRelatedWork W2968586400 @default.
- W3208954293 hasRelatedWork W2989932438 @default.
- W3208954293 hasRelatedWork W3099765033 @default.
- W3208954293 hasRelatedWork W3216260728 @default.
- W3208954293 hasRelatedWork W4210794429 @default.
- W3208954293 hasRelatedWork W4312706017 @default.
- W3208954293 hasRelatedWork W4316087074 @default.
- W3208954293 hasRelatedWork W4361732492 @default.
- W3208954293 hasRelatedWork W4378904171 @default.
- W3208954293 hasVolume "71" @default.
- W3208954293 isParatext "false" @default.