Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208967345> ?p ?o ?g. }
- W3208967345 endingPage "012017" @default.
- W3208967345 startingPage "012017" @default.
- W3208967345 abstract "Abstract Parity Time Reversal (PT) phase transition is a typical characteristic of most of the PT symmetric non-Hermitian (NH) systems. Depending on the theory, a particular system and spacetime dimensionality PT phase transition has various interesting features. In this article we review some of our works on PT phase transitions in quantum mechanics (QM) as well as in Quantum Field theory (QFT). We demonstrate typical characteristics of PT phase transition with the help of several analytically solved examples. In one dimensional QM, we consider examples with exactly as well as quasi exactly solvable (QES) models to capture essential features of PT phase transition. The discrete symmetries have rich structures in higher dimensions which are used to explore the PT phase transition in higher dimensional systems. We consider anisotropic SHOs in two and three dimensions to realize some connection between the symmetry of original hermitian Hamiltonian and the unbroken phase of the NH system. We consider the 2+1 dimensional massless Dirac particle in the external magnetic field with PT symmetric non-Hermitian spin-orbit interaction in the background of the Dirac oscillator potential to show the PT phase transition in a relativistic system. A small mass gap, consistent with the other approaches and experimental observations is generated only in the unbroken phase of the system. Finally we develop the NH formulation in an SU(N) gauge field theoretic model by using the natural but unconventional Hermiticity properties of the ghost fields. Deconfinement to confinement phase transition has been realized as PT phase transition in such a non-hermitian model." @default.
- W3208967345 created "2021-11-08" @default.
- W3208967345 creator A5077446967 @default.
- W3208967345 date "2021-10-01" @default.
- W3208967345 modified "2023-09-25" @default.
- W3208967345 title "Examples of PT Phase Transition : QM to QFT" @default.
- W3208967345 cites W1496923278 @default.
- W3208967345 cites W1531935167 @default.
- W3208967345 cites W185031802 @default.
- W3208967345 cites W1968137440 @default.
- W3208967345 cites W1970724402 @default.
- W3208967345 cites W1981777849 @default.
- W3208967345 cites W1983818053 @default.
- W3208967345 cites W1984386882 @default.
- W3208967345 cites W1987833701 @default.
- W3208967345 cites W1989869345 @default.
- W3208967345 cites W1990433461 @default.
- W3208967345 cites W1997112842 @default.
- W3208967345 cites W1999537387 @default.
- W3208967345 cites W1999750768 @default.
- W3208967345 cites W2016069990 @default.
- W3208967345 cites W2019822868 @default.
- W3208967345 cites W2023180912 @default.
- W3208967345 cites W2024786641 @default.
- W3208967345 cites W2027720279 @default.
- W3208967345 cites W2028101557 @default.
- W3208967345 cites W2028785431 @default.
- W3208967345 cites W2033981766 @default.
- W3208967345 cites W2047699813 @default.
- W3208967345 cites W2048910685 @default.
- W3208967345 cites W2051235662 @default.
- W3208967345 cites W2053708568 @default.
- W3208967345 cites W2056218258 @default.
- W3208967345 cites W2058122340 @default.
- W3208967345 cites W2060387850 @default.
- W3208967345 cites W2061571240 @default.
- W3208967345 cites W2062761094 @default.
- W3208967345 cites W2067123857 @default.
- W3208967345 cites W2068824512 @default.
- W3208967345 cites W2072319141 @default.
- W3208967345 cites W2072635720 @default.
- W3208967345 cites W2081796865 @default.
- W3208967345 cites W2086031744 @default.
- W3208967345 cites W2091648847 @default.
- W3208967345 cites W2093531064 @default.
- W3208967345 cites W2105685140 @default.
- W3208967345 cites W2119325634 @default.
- W3208967345 cites W2125284466 @default.
- W3208967345 cites W2140726841 @default.
- W3208967345 cites W2143271396 @default.
- W3208967345 cites W2149936758 @default.
- W3208967345 cites W2168499099 @default.
- W3208967345 cites W2268965330 @default.
- W3208967345 cites W2397604017 @default.
- W3208967345 cites W2550534203 @default.
- W3208967345 cites W2603742797 @default.
- W3208967345 cites W2730756150 @default.
- W3208967345 cites W2777424363 @default.
- W3208967345 cites W2802813949 @default.
- W3208967345 cites W2898798765 @default.
- W3208967345 cites W2928649169 @default.
- W3208967345 cites W2945113070 @default.
- W3208967345 cites W2945565493 @default.
- W3208967345 cites W2950402400 @default.
- W3208967345 cites W2951635196 @default.
- W3208967345 cites W2955035853 @default.
- W3208967345 cites W2957628806 @default.
- W3208967345 cites W2962945599 @default.
- W3208967345 cites W2997512846 @default.
- W3208967345 cites W2999582109 @default.
- W3208967345 cites W3001302743 @default.
- W3208967345 cites W3006866978 @default.
- W3208967345 cites W3013740163 @default.
- W3208967345 cites W3025016129 @default.
- W3208967345 cites W3037762229 @default.
- W3208967345 cites W3038417779 @default.
- W3208967345 cites W3039097986 @default.
- W3208967345 cites W3048169068 @default.
- W3208967345 cites W3048455715 @default.
- W3208967345 cites W3087514043 @default.
- W3208967345 cites W3093181575 @default.
- W3208967345 cites W3098465011 @default.
- W3208967345 cites W3098972513 @default.
- W3208967345 cites W3100434497 @default.
- W3208967345 cites W3101109644 @default.
- W3208967345 cites W3103883648 @default.
- W3208967345 cites W3104404266 @default.
- W3208967345 cites W3104668646 @default.
- W3208967345 cites W3105037911 @default.
- W3208967345 cites W3105049322 @default.
- W3208967345 cites W3105588871 @default.
- W3208967345 cites W3105806686 @default.
- W3208967345 cites W3108090334 @default.
- W3208967345 cites W3117393478 @default.
- W3208967345 cites W3123721039 @default.
- W3208967345 cites W3125037952 @default.
- W3208967345 cites W3125306275 @default.
- W3208967345 cites W3126205277 @default.