Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208972679> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3208972679 abstract "Health care, public safety, home security and self-driving cars applications rely on the automatic identification and interpretation of sound events. For example, abnormal respiratory sounds indicate respiratory problems, a gunshot or a glass breaking imply a safe alert, and an ambulance siren wailing implies that vehicles should stop or pull over. Systems that can automatically recognize sound events in order to extract meaning that helps us react accordingly, aresystems capable of Sound Understanding. Sound Understanding is an emerging field of Machine Hearing, which aims to build systems that can do sound-related tasks that have nothing to do with hearing - such as sonography, seismic, and sonar - and systems that could hear the way humans do and distinguish between music, speech and sounds [1]. Hearing machines that understand sounds like humans do require computational programs that can learn from years of accumulated diverse acoustics. They must useassociated knowledge to guide subsequent learning and organize what they hear, learn names for recognizable events, scenes, objects, actions, materials, places, and retrieve sounds by reference to those names. These machines must also continuously improve their hearing competence to encompass all the diversity and scale of the acoustics in the world. Therefore, this thesis proposes the Never-Ending Learning of Sounds (NELS), a computationalprogram that aims to build hearing machines that understand sounds under a never-ending learning paradigm. NELS continuously hears the Web, in order to learn meaningful categories and relationships of sounds, and use this knowledge to index and organize the crawled audio. The content is made available for people to query and recover all kinds of information. To enhanceNELS quality of expression of acoustic phenomena, we introduced a new interdisciplinary solution that draws domain knowledge from Psychology to build Machine Learning models. NELS breaks ground in challenges of Sound Understanding, such as collecting datasets with different types of labels and annotation processes, designing and improving sound recognition models, defining knowledge about sounds, and retrieving sounds with different types of similarities." @default.
- W3208972679 created "2021-11-08" @default.
- W3208972679 creator A5056600306 @default.
- W3208972679 date "2020-12-17" @default.
- W3208972679 modified "2023-09-22" @default.
- W3208972679 title "Never-Ending Learning of Sounds" @default.
- W3208972679 doi "https://doi.org/10.1184/r1/13408631.v1" @default.
- W3208972679 hasPublicationYear "2020" @default.
- W3208972679 type Work @default.
- W3208972679 sameAs 3208972679 @default.
- W3208972679 citedByCount "1" @default.
- W3208972679 countsByYear W32089726792021 @default.
- W3208972679 crossrefType "dissertation" @default.
- W3208972679 hasAuthorship W3208972679A5056600306 @default.
- W3208972679 hasConcept C100521375 @default.
- W3208972679 hasConcept C121332964 @default.
- W3208972679 hasConcept C15744967 @default.
- W3208972679 hasConcept C203718221 @default.
- W3208972679 hasConcept C24890656 @default.
- W3208972679 hasConcept C2780876879 @default.
- W3208972679 hasConcept C41008148 @default.
- W3208972679 hasConcept C542102704 @default.
- W3208972679 hasConcept C77805123 @default.
- W3208972679 hasConceptScore W3208972679C100521375 @default.
- W3208972679 hasConceptScore W3208972679C121332964 @default.
- W3208972679 hasConceptScore W3208972679C15744967 @default.
- W3208972679 hasConceptScore W3208972679C203718221 @default.
- W3208972679 hasConceptScore W3208972679C24890656 @default.
- W3208972679 hasConceptScore W3208972679C2780876879 @default.
- W3208972679 hasConceptScore W3208972679C41008148 @default.
- W3208972679 hasConceptScore W3208972679C542102704 @default.
- W3208972679 hasConceptScore W3208972679C77805123 @default.
- W3208972679 hasLocation W32089726791 @default.
- W3208972679 hasOpenAccess W3208972679 @default.
- W3208972679 hasPrimaryLocation W32089726791 @default.
- W3208972679 hasRelatedWork W111038263 @default.
- W3208972679 hasRelatedWork W135141036 @default.
- W3208972679 hasRelatedWork W1523199410 @default.
- W3208972679 hasRelatedWork W1971267889 @default.
- W3208972679 hasRelatedWork W1976602891 @default.
- W3208972679 hasRelatedWork W1981060864 @default.
- W3208972679 hasRelatedWork W1996222974 @default.
- W3208972679 hasRelatedWork W2037328847 @default.
- W3208972679 hasRelatedWork W2037705437 @default.
- W3208972679 hasRelatedWork W2046972719 @default.
- W3208972679 hasRelatedWork W2058560157 @default.
- W3208972679 hasRelatedWork W2186582651 @default.
- W3208972679 hasRelatedWork W2207051139 @default.
- W3208972679 hasRelatedWork W2320159660 @default.
- W3208972679 hasRelatedWork W2551596185 @default.
- W3208972679 hasRelatedWork W2732588551 @default.
- W3208972679 hasRelatedWork W2763180331 @default.
- W3208972679 hasRelatedWork W2810607999 @default.
- W3208972679 hasRelatedWork W3210623009 @default.
- W3208972679 hasRelatedWork W2932661522 @default.
- W3208972679 isParatext "false" @default.
- W3208972679 isRetracted "false" @default.
- W3208972679 magId "3208972679" @default.
- W3208972679 workType "dissertation" @default.