Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208977238> ?p ?o ?g. }
- W3208977238 endingPage "1777" @default.
- W3208977238 startingPage "1746" @default.
- W3208977238 abstract "This paper explores the combined effects of Coriolis force and electric force on the rotating boundary layer flow and heat transfer in a viscoplastic hybrid nanofluid from a vertical exponentially accelerated plate. The hybrid nanofluid comprises two different types of metallic nanoparticles, namely silver (Ag) and magnesium oxide (MgO) suspended in an aqueous base fluid. The Casson model is deployed for non-Newtonian effects. An empirical model is implemented to determine the thermal conductivity of the hybrid nanofluid. Rosseland's radiative diffusion flux model is also utilized. An axial electrical field is considered and the Poisson–Boltzmann equation is linearized via the Debye–Hückel approach. The resulting coupled differential equations subject to prescribed boundary conditions are solved with Laplace transforms. Numerical evaluation of solutions is achieved via MATLAB symbolic software. A parametric study of the impact of key parameters on axial velocity, transverse velocity, nanoparticle temperature and Nusselt number is conducted for both the hybrid (Ag–MgO)–water nanofluid and also unitary (Ag)–water nanofluid. With increasing volume fraction of silver nanoparticles, there is a reduction in both axial velocity and temperatures, whereas there is a distinct elevation in transverse velocity for both unitary and hybrid nanofluids. Elevation in the heat absorption parameter strongly decreases axial velocity, whereas it enhances transverse velocity. Increasing the radiation parameter strongly boosts temperatures. Increasing the heat absorption parameter significantly accelerates the transverse flow. Negative values of Helmholtz–Smoluchowski velocity decelerate the axial flow whereas positive values accelerate it; the opposite behavior is observed for transverse velocity. Increasing Taylor number significantly damps both the axial (primary) and transversal (secondary) flow. Increasing thermal Grashof number strongly enhances the axial flow but damps the transverse flow. The unitary nanofluid achieves higher Nusselt numbers than the hybrid nanofluid but these are decreased with greater radiative effect (due to greater heat transport away from the plate surface), Prandtl number and heat absorption. Nusselt number is significantly reduced with greater time progression and values are consistently higher for the unitary nanofluid compared with hybrid nanofluid. The computations provide insight into more complex electrokinetic rheological nanoscale flows of relevance to biomedical rotary electro-osmotic separation devices." @default.
- W3208977238 created "2021-11-08" @default.
- W3208977238 creator A5021115895 @default.
- W3208977238 creator A5060842917 @default.
- W3208977238 creator A5064699905 @default.
- W3208977238 creator A5070461306 @default.
- W3208977238 creator A5073830434 @default.
- W3208977238 date "2021-10-29" @default.
- W3208977238 modified "2023-09-23" @default.
- W3208977238 title "Thermo‐electrokinetic rotating non‐Newtonian hybrid nanofluid flow from an accelerating vertical surface" @default.
- W3208977238 cites W1212735128 @default.
- W3208977238 cites W1969356511 @default.
- W3208977238 cites W1973215876 @default.
- W3208977238 cites W1993890409 @default.
- W3208977238 cites W2015918962 @default.
- W3208977238 cites W2047742794 @default.
- W3208977238 cites W2049092525 @default.
- W3208977238 cites W2052223803 @default.
- W3208977238 cites W2057351967 @default.
- W3208977238 cites W2063080555 @default.
- W3208977238 cites W2067426231 @default.
- W3208977238 cites W2090313332 @default.
- W3208977238 cites W2091867525 @default.
- W3208977238 cites W2092144527 @default.
- W3208977238 cites W2107653342 @default.
- W3208977238 cites W2132138077 @default.
- W3208977238 cites W2141526656 @default.
- W3208977238 cites W2288391505 @default.
- W3208977238 cites W2415373090 @default.
- W3208977238 cites W2477713142 @default.
- W3208977238 cites W2496185330 @default.
- W3208977238 cites W2506727573 @default.
- W3208977238 cites W2518078236 @default.
- W3208977238 cites W2522380928 @default.
- W3208977238 cites W2531334171 @default.
- W3208977238 cites W2599908463 @default.
- W3208977238 cites W2604026034 @default.
- W3208977238 cites W2732479548 @default.
- W3208977238 cites W2746948359 @default.
- W3208977238 cites W2750605134 @default.
- W3208977238 cites W2755511593 @default.
- W3208977238 cites W2772927800 @default.
- W3208977238 cites W2809012222 @default.
- W3208977238 cites W2811318628 @default.
- W3208977238 cites W2898882095 @default.
- W3208977238 cites W2914646941 @default.
- W3208977238 cites W2916981390 @default.
- W3208977238 cites W2918364383 @default.
- W3208977238 cites W2936186055 @default.
- W3208977238 cites W2989985229 @default.
- W3208977238 cites W2990170883 @default.
- W3208977238 cites W2995735774 @default.
- W3208977238 cites W2997625265 @default.
- W3208977238 cites W2998379089 @default.
- W3208977238 cites W2999424050 @default.
- W3208977238 cites W3006021676 @default.
- W3208977238 cites W3008381679 @default.
- W3208977238 cites W3011233562 @default.
- W3208977238 cites W3015738516 @default.
- W3208977238 cites W3016553351 @default.
- W3208977238 cites W3028338055 @default.
- W3208977238 cites W3119900713 @default.
- W3208977238 cites W3170963779 @default.
- W3208977238 cites W4243692799 @default.
- W3208977238 cites W998874852 @default.
- W3208977238 doi "https://doi.org/10.1002/htj.22373" @default.
- W3208977238 hasPublicationYear "2021" @default.
- W3208977238 type Work @default.
- W3208977238 sameAs 3208977238 @default.
- W3208977238 citedByCount "6" @default.
- W3208977238 countsByYear W32089772382022 @default.
- W3208977238 countsByYear W32089772382023 @default.
- W3208977238 crossrefType "journal-article" @default.
- W3208977238 hasAuthorship W3208977238A5021115895 @default.
- W3208977238 hasAuthorship W3208977238A5060842917 @default.
- W3208977238 hasAuthorship W3208977238A5064699905 @default.
- W3208977238 hasAuthorship W3208977238A5070461306 @default.
- W3208977238 hasAuthorship W3208977238A5073830434 @default.
- W3208977238 hasBestOaLocation W32089772382 @default.
- W3208977238 hasConcept C121332964 @default.
- W3208977238 hasConcept C130230704 @default.
- W3208977238 hasConcept C166693061 @default.
- W3208977238 hasConcept C182748727 @default.
- W3208977238 hasConcept C192562407 @default.
- W3208977238 hasConcept C196558001 @default.
- W3208977238 hasConcept C21946209 @default.
- W3208977238 hasConcept C38349280 @default.
- W3208977238 hasConcept C50517652 @default.
- W3208977238 hasConcept C57879066 @default.
- W3208977238 hasConcept C97355855 @default.
- W3208977238 hasConceptScore W3208977238C121332964 @default.
- W3208977238 hasConceptScore W3208977238C130230704 @default.
- W3208977238 hasConceptScore W3208977238C166693061 @default.
- W3208977238 hasConceptScore W3208977238C182748727 @default.
- W3208977238 hasConceptScore W3208977238C192562407 @default.
- W3208977238 hasConceptScore W3208977238C196558001 @default.
- W3208977238 hasConceptScore W3208977238C21946209 @default.
- W3208977238 hasConceptScore W3208977238C38349280 @default.