Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208990045> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3208990045 endingPage "e94" @default.
- W3208990045 startingPage "e94" @default.
- W3208990045 abstract "With many deep learning (DL) models being developed for clinical applications, it is important to understand their behavior and clinical consequence. This study aims to collect insights of the relationship between fluence map prediction error and its dosimetric impacts in a DL-based AI agent for H&N IMRT planning.An AI agent has been implemented to generate IMRT plans via fluence map prediction, bypassing inverse optimization. While the prostate IMRT plans generated by the agent were comparable to clinical plans in quality, the application into H&N patients exhibited large variations in the plan quality due to higher anatomy complexity. As the DL model's output is fluence maps of an IMRT plan, standard error analyses were focused on the differences between the predicted and ground truth fluence maps, i.e., prediction error. However, the ultimate plan evaluation is based on clinical criteria such as DVHs and dose distributions. Therefore, the AI agent's performance in clinics is subjected to complex and non-intuitive relationships between fluence map prediction error and corresponding dose distribution changes, and warrants thorough investigation. In this study, a series of tests were designed to collect insights of the impact of DL model performance on plan's dosimetric quality. The fluence map prediction error was analyzed for its dosimetric effects using five error decomposition modes:1) ground truth fluence intensity bands in 5 threshold levels, 2) predicted fluence intensity bands in 5 threshold levels, 3) ground truth fluence gradient bands (high and low), 4) Fourier space bands (frequency bands) in 8 threshold levels, and 5) Fourier space circles (below certain frequency) in 8 threshold levels. The DL model was trained with 216 cases and tested with 15 additional cases. PTV and OAR dosimetric metrics were analyzed by Spearman's rank tests (P = 0.05).Most PTV-related metrics were significantly correlated with the error components. Among the different decomposition modes, the Fourier space circle radii have large Spearman's coefficients with PTV metrics, suggesting that they were best able to extract error components that reveal plan quality impacts. The low-frequency error within a Fourier space circle of radius = 32 pixels (20% of Fourier space) had the most significant impact on overall plan quality and PTV heterogeneity.The fluence map prediction error analysis is critical to evaluate the AI agent performance. Such insight will help with fine-tuning the DL models in architecture design and loss function selection." @default.
- W3208990045 created "2021-11-08" @default.
- W3208990045 creator A5027943246 @default.
- W3208990045 creator A5040980574 @default.
- W3208990045 creator A5050081575 @default.
- W3208990045 creator A5050495630 @default.
- W3208990045 creator A5050609316 @default.
- W3208990045 creator A5056528692 @default.
- W3208990045 creator A5074169486 @default.
- W3208990045 creator A5087619761 @default.
- W3208990045 date "2021-11-01" @default.
- W3208990045 modified "2023-09-28" @default.
- W3208990045 title "Collect Insights of an H&N IMRT Planning AI Agent Through Analyzing Relationships Between Fluence Map Prediction Error and the Corresponding Dosimetric Impacts" @default.
- W3208990045 doi "https://doi.org/10.1016/j.ijrobp.2021.07.479" @default.
- W3208990045 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34702003" @default.
- W3208990045 hasPublicationYear "2021" @default.
- W3208990045 type Work @default.
- W3208990045 sameAs 3208990045 @default.
- W3208990045 citedByCount "0" @default.
- W3208990045 crossrefType "journal-article" @default.
- W3208990045 hasAuthorship W3208990045A5027943246 @default.
- W3208990045 hasAuthorship W3208990045A5040980574 @default.
- W3208990045 hasAuthorship W3208990045A5050081575 @default.
- W3208990045 hasAuthorship W3208990045A5050495630 @default.
- W3208990045 hasAuthorship W3208990045A5050609316 @default.
- W3208990045 hasAuthorship W3208990045A5056528692 @default.
- W3208990045 hasAuthorship W3208990045A5074169486 @default.
- W3208990045 hasAuthorship W3208990045A5087619761 @default.
- W3208990045 hasBestOaLocation W32089900451 @default.
- W3208990045 hasConcept C105795698 @default.
- W3208990045 hasConcept C11413529 @default.
- W3208990045 hasConcept C120665830 @default.
- W3208990045 hasConcept C121332964 @default.
- W3208990045 hasConcept C146849305 @default.
- W3208990045 hasConcept C154945302 @default.
- W3208990045 hasConcept C166957645 @default.
- W3208990045 hasConcept C19527891 @default.
- W3208990045 hasConcept C22078206 @default.
- W3208990045 hasConcept C2776505523 @default.
- W3208990045 hasConcept C2779530757 @default.
- W3208990045 hasConcept C2989005 @default.
- W3208990045 hasConcept C33923547 @default.
- W3208990045 hasConcept C41008148 @default.
- W3208990045 hasConcept C520434653 @default.
- W3208990045 hasConcept C62520636 @default.
- W3208990045 hasConcept C71924100 @default.
- W3208990045 hasConcept C95457728 @default.
- W3208990045 hasConceptScore W3208990045C105795698 @default.
- W3208990045 hasConceptScore W3208990045C11413529 @default.
- W3208990045 hasConceptScore W3208990045C120665830 @default.
- W3208990045 hasConceptScore W3208990045C121332964 @default.
- W3208990045 hasConceptScore W3208990045C146849305 @default.
- W3208990045 hasConceptScore W3208990045C154945302 @default.
- W3208990045 hasConceptScore W3208990045C166957645 @default.
- W3208990045 hasConceptScore W3208990045C19527891 @default.
- W3208990045 hasConceptScore W3208990045C22078206 @default.
- W3208990045 hasConceptScore W3208990045C2776505523 @default.
- W3208990045 hasConceptScore W3208990045C2779530757 @default.
- W3208990045 hasConceptScore W3208990045C2989005 @default.
- W3208990045 hasConceptScore W3208990045C33923547 @default.
- W3208990045 hasConceptScore W3208990045C41008148 @default.
- W3208990045 hasConceptScore W3208990045C520434653 @default.
- W3208990045 hasConceptScore W3208990045C62520636 @default.
- W3208990045 hasConceptScore W3208990045C71924100 @default.
- W3208990045 hasConceptScore W3208990045C95457728 @default.
- W3208990045 hasIssue "3" @default.
- W3208990045 hasLocation W32089900451 @default.
- W3208990045 hasLocation W32089900452 @default.
- W3208990045 hasOpenAccess W3208990045 @default.
- W3208990045 hasPrimaryLocation W32089900451 @default.
- W3208990045 hasRelatedWork W1982685118 @default.
- W3208990045 hasRelatedWork W2130151498 @default.
- W3208990045 hasRelatedWork W2351491280 @default.
- W3208990045 hasRelatedWork W2386767533 @default.
- W3208990045 hasRelatedWork W2748952813 @default.
- W3208990045 hasRelatedWork W2899084033 @default.
- W3208990045 hasRelatedWork W2904499449 @default.
- W3208990045 hasRelatedWork W2952663681 @default.
- W3208990045 hasRelatedWork W303980170 @default.
- W3208990045 hasRelatedWork W3107474891 @default.
- W3208990045 hasVolume "111" @default.
- W3208990045 isParatext "false" @default.
- W3208990045 isRetracted "false" @default.
- W3208990045 magId "3208990045" @default.
- W3208990045 workType "article" @default.