Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209010972> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3209010972 abstract "Genetic Programming (GP), an evolutionary learning technique, has multiple applications in machine learning such as curve fitting, data modelling, feature selection, classification etc. GP has several inherent parallel steps, making it an ideal candidate for GPU based parallelization. This paper describes a GPU accelerated stack-based variant of the generational GP algorithm which can be used for symbolic regression and binary classification. The selection and evaluation steps of the generational GP algorithm are parallelized using CUDA. We introduce representing candidate solution expressions as prefix lists, which enables evaluation using a fixed-length stack in GPU memory. CUDA based matrix vector operations are also used for computation of the fitness of population programs. We evaluate our algorithm on synthetic datasets for the Pagie Polynomial (ranging in size from $4096$ to $16$ million points), profiling training times of our algorithm with other standard symbolic regression libraries viz. gplearn, TensorGP and KarooGP. In addition, using $6$ large-scale regression and classification datasets usually used for comparing gradient boosting algorithms, we run performance benchmarks on our algorithm and gplearn, profiling the training time, test accuracy, and loss. On an NVIDIA DGX-A100 GPU, our algorithm outperforms all the previously listed frameworks, and in particular, achieves average speedups of $119times$ and $40times$ against gplearn on the synthetic and large scale datasets respectively." @default.
- W3209010972 created "2021-11-08" @default.
- W3209010972 creator A5012034510 @default.
- W3209010972 creator A5044115418 @default.
- W3209010972 creator A5052947318 @default.
- W3209010972 date "2021-10-15" @default.
- W3209010972 modified "2023-09-26" @default.
- W3209010972 title "Accelerating Genetic Programming using GPUs." @default.
- W3209010972 cites W1489425340 @default.
- W3209010972 cites W1568834902 @default.
- W3209010972 cites W1576818901 @default.
- W3209010972 cites W1980900887 @default.
- W3209010972 cites W2015150738 @default.
- W3209010972 cites W2075075402 @default.
- W3209010972 cites W2084288340 @default.
- W3209010972 cites W2109042184 @default.
- W3209010972 cites W2583548032 @default.
- W3209010972 cites W3006150655 @default.
- W3209010972 cites W3120740533 @default.
- W3209010972 hasPublicationYear "2021" @default.
- W3209010972 type Work @default.
- W3209010972 sameAs 3209010972 @default.
- W3209010972 citedByCount "0" @default.
- W3209010972 crossrefType "posted-content" @default.
- W3209010972 hasAuthorship W3209010972A5012034510 @default.
- W3209010972 hasAuthorship W3209010972A5044115418 @default.
- W3209010972 hasAuthorship W3209010972A5052947318 @default.
- W3209010972 hasConcept C110332635 @default.
- W3209010972 hasConcept C11413529 @default.
- W3209010972 hasConcept C121684516 @default.
- W3209010972 hasConcept C12267149 @default.
- W3209010972 hasConcept C144024400 @default.
- W3209010972 hasConcept C148483581 @default.
- W3209010972 hasConcept C149923435 @default.
- W3209010972 hasConcept C154945302 @default.
- W3209010972 hasConcept C173608175 @default.
- W3209010972 hasConcept C21442007 @default.
- W3209010972 hasConcept C2776400721 @default.
- W3209010972 hasConcept C2778119891 @default.
- W3209010972 hasConcept C2908647359 @default.
- W3209010972 hasConcept C41008148 @default.
- W3209010972 hasConcept C45374587 @default.
- W3209010972 hasConcept C46686674 @default.
- W3209010972 hasConcept C50630238 @default.
- W3209010972 hasConceptScore W3209010972C110332635 @default.
- W3209010972 hasConceptScore W3209010972C11413529 @default.
- W3209010972 hasConceptScore W3209010972C121684516 @default.
- W3209010972 hasConceptScore W3209010972C12267149 @default.
- W3209010972 hasConceptScore W3209010972C144024400 @default.
- W3209010972 hasConceptScore W3209010972C148483581 @default.
- W3209010972 hasConceptScore W3209010972C149923435 @default.
- W3209010972 hasConceptScore W3209010972C154945302 @default.
- W3209010972 hasConceptScore W3209010972C173608175 @default.
- W3209010972 hasConceptScore W3209010972C21442007 @default.
- W3209010972 hasConceptScore W3209010972C2776400721 @default.
- W3209010972 hasConceptScore W3209010972C2778119891 @default.
- W3209010972 hasConceptScore W3209010972C2908647359 @default.
- W3209010972 hasConceptScore W3209010972C41008148 @default.
- W3209010972 hasConceptScore W3209010972C45374587 @default.
- W3209010972 hasConceptScore W3209010972C46686674 @default.
- W3209010972 hasConceptScore W3209010972C50630238 @default.
- W3209010972 hasLocation W32090109721 @default.
- W3209010972 hasOpenAccess W3209010972 @default.
- W3209010972 hasPrimaryLocation W32090109721 @default.
- W3209010972 hasRelatedWork W1991604296 @default.
- W3209010972 hasRelatedWork W1998727448 @default.
- W3209010972 hasRelatedWork W2014680697 @default.
- W3209010972 hasRelatedWork W2047213715 @default.
- W3209010972 hasRelatedWork W2117633720 @default.
- W3209010972 hasRelatedWork W2161616775 @default.
- W3209010972 hasRelatedWork W2182708376 @default.
- W3209010972 hasRelatedWork W2321251438 @default.
- W3209010972 hasRelatedWork W2334150052 @default.
- W3209010972 hasRelatedWork W2522252808 @default.
- W3209010972 hasRelatedWork W2607112060 @default.
- W3209010972 hasRelatedWork W2736396799 @default.
- W3209010972 hasRelatedWork W2770231704 @default.
- W3209010972 hasRelatedWork W2783918938 @default.
- W3209010972 hasRelatedWork W2903940371 @default.
- W3209010972 hasRelatedWork W2936045614 @default.
- W3209010972 hasRelatedWork W2980804970 @default.
- W3209010972 hasRelatedWork W3126499951 @default.
- W3209010972 hasRelatedWork W3174479087 @default.
- W3209010972 hasRelatedWork W1648986678 @default.
- W3209010972 isParatext "false" @default.
- W3209010972 isRetracted "false" @default.
- W3209010972 magId "3209010972" @default.
- W3209010972 workType "article" @default.