Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209021272> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3209021272 endingPage "102912" @default.
- W3209021272 startingPage "102912" @default.
- W3209021272 abstract "Stress, depression, and anxiety are a person's physiological states that emerge from various body features such as speech, body language, eye contact, facial expression, etc. Physiological emotion is a part of human life and is associated with psychological activities. Sad emotion is relatable to negative thoughts and recognized in three stages containing stress, anxiety, and depression. These stages of Physiological emotion show various common and distinguished symptoms. The present study explores stress, depression, and anxiety symptoms in student life. The study reviews the psychological features generated through various body parts to identify psychological activities. Environmental factors, including a daily routine, greatly trigger psychological activities. The psychological disorder may affect mental and physical health adversely. The correct recognition of such disorder is expensive and time-consuming as it requires accurate datasets of symptoms. In the present study, an attempt has been made to investigate the effectiveness of computerized automated techniques that include machine learning algorithms for identifying stress, anxiety, and depression mental disorder. The proposed paper reviews the machine learning-based algorithms applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. During the review process, the proposed study found that artificial intelligence and machine learning techniques are well recommended and widely utilized in most of the existing literature for measuring psychological disorders. The various machine learning-based algorithms are applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. There has been continuous monitoring for the body symptoms established in the various existing literature to identify psychological states. The present review reveals the study of excellence and competence of machine learning techniques in detecting psychological disorders' stress, depression, and anxiety parameters. This paper shows a systematic review of some existing computer vision-based models with their merits and demerits." @default.
- W3209021272 created "2021-11-08" @default.
- W3209021272 creator A5005160638 @default.
- W3209021272 creator A5015163250 @default.
- W3209021272 creator A5032039784 @default.
- W3209021272 creator A5079590039 @default.
- W3209021272 date "2022-01-01" @default.
- W3209021272 modified "2023-10-17" @default.
- W3209021272 title "Repetitive transcranial magnetic stimulation (rTMS) treatment in ketamine use disorder: A case report" @default.
- W3209021272 cites W1961364466 @default.
- W3209021272 cites W2126900474 @default.
- W3209021272 cites W2128918664 @default.
- W3209021272 cites W2963910937 @default.
- W3209021272 doi "https://doi.org/10.1016/j.ajp.2021.102912" @default.
- W3209021272 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34823224" @default.
- W3209021272 hasPublicationYear "2022" @default.
- W3209021272 type Work @default.
- W3209021272 sameAs 3209021272 @default.
- W3209021272 citedByCount "1" @default.
- W3209021272 countsByYear W32090212722022 @default.
- W3209021272 crossrefType "journal-article" @default.
- W3209021272 hasAuthorship W3209021272A5005160638 @default.
- W3209021272 hasAuthorship W3209021272A5015163250 @default.
- W3209021272 hasAuthorship W3209021272A5032039784 @default.
- W3209021272 hasAuthorship W3209021272A5079590039 @default.
- W3209021272 hasConcept C118552586 @default.
- W3209021272 hasConcept C134362201 @default.
- W3209021272 hasConcept C139719470 @default.
- W3209021272 hasConcept C154945302 @default.
- W3209021272 hasConcept C15744967 @default.
- W3209021272 hasConcept C162324750 @default.
- W3209021272 hasConcept C2776867660 @default.
- W3209021272 hasConcept C41008148 @default.
- W3209021272 hasConcept C542102704 @default.
- W3209021272 hasConcept C558461103 @default.
- W3209021272 hasConcept C70410870 @default.
- W3209021272 hasConceptScore W3209021272C118552586 @default.
- W3209021272 hasConceptScore W3209021272C134362201 @default.
- W3209021272 hasConceptScore W3209021272C139719470 @default.
- W3209021272 hasConceptScore W3209021272C154945302 @default.
- W3209021272 hasConceptScore W3209021272C15744967 @default.
- W3209021272 hasConceptScore W3209021272C162324750 @default.
- W3209021272 hasConceptScore W3209021272C2776867660 @default.
- W3209021272 hasConceptScore W3209021272C41008148 @default.
- W3209021272 hasConceptScore W3209021272C542102704 @default.
- W3209021272 hasConceptScore W3209021272C558461103 @default.
- W3209021272 hasConceptScore W3209021272C70410870 @default.
- W3209021272 hasFunder F4320326425 @default.
- W3209021272 hasLocation W32090212721 @default.
- W3209021272 hasLocation W32090212722 @default.
- W3209021272 hasOpenAccess W3209021272 @default.
- W3209021272 hasPrimaryLocation W32090212721 @default.
- W3209021272 hasRelatedWork W2013721540 @default.
- W3209021272 hasRelatedWork W2134151402 @default.
- W3209021272 hasRelatedWork W2165343866 @default.
- W3209021272 hasRelatedWork W2367402799 @default.
- W3209021272 hasRelatedWork W2377334017 @default.
- W3209021272 hasRelatedWork W2378173657 @default.
- W3209021272 hasRelatedWork W2769243276 @default.
- W3209021272 hasRelatedWork W3091995835 @default.
- W3209021272 hasRelatedWork W4205740184 @default.
- W3209021272 hasRelatedWork W4307268571 @default.
- W3209021272 hasVolume "67" @default.
- W3209021272 isParatext "false" @default.
- W3209021272 isRetracted "false" @default.
- W3209021272 magId "3209021272" @default.
- W3209021272 workType "article" @default.