Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209116923> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3209116923 abstract "Machine learning techniques enable systems to learn Important representations from input Image data. Convolutional neural networks (CNNs) are a specific implementation of machine learning techniques and are able to create expressive representations from the input image. Hence CNNs are well suited for image processing operations such as classification, clustering, and object detection, etc. The creation of a new effectual deep CNN model involves an extensive training phase. This requires very large datasets, huge computation environments, and longer execution time. Several established deep CNNs are readily available. These networks are pre-trained on massive databases of images. VGG, ResNet, and InceptionResNetVZ are the leading pre-trained CNN models currently being used in numerous image-processing studies. Possibly we can transfer knowledge learned from such models in order to address challenges in different domains. This can be achieved by repurposing a deep CNN model as a feature generator to produce effective features for content based information retrieval applications. This research work proposes a technique for recognizing fish using deep convolutional neural networks such as ResNet-50, InceptionResNetVZ, and VGG16 that have been pre-trained using transfer learning." @default.
- W3209116923 created "2021-11-08" @default.
- W3209116923 creator A5043722627 @default.
- W3209116923 creator A5064904219 @default.
- W3209116923 creator A5077884214 @default.
- W3209116923 creator A5085899873 @default.
- W3209116923 date "2021-08-26" @default.
- W3209116923 modified "2023-10-11" @default.
- W3209116923 title "Transfer Learning Inspired Fish Species Classification" @default.
- W3209116923 cites W2606344836 @default.
- W3209116923 cites W2623373865 @default.
- W3209116923 cites W2887063112 @default.
- W3209116923 cites W2889020395 @default.
- W3209116923 cites W2904637289 @default.
- W3209116923 cites W2913906039 @default.
- W3209116923 cites W2953594693 @default.
- W3209116923 cites W2988868065 @default.
- W3209116923 cites W2997127923 @default.
- W3209116923 cites W3011495011 @default.
- W3209116923 cites W3011785450 @default.
- W3209116923 cites W3014041368 @default.
- W3209116923 cites W3017205434 @default.
- W3209116923 cites W3023351371 @default.
- W3209116923 cites W3024389181 @default.
- W3209116923 cites W3032732905 @default.
- W3209116923 cites W3037415566 @default.
- W3209116923 cites W3080525841 @default.
- W3209116923 cites W3089716863 @default.
- W3209116923 cites W3149441541 @default.
- W3209116923 doi "https://doi.org/10.1109/spin52536.2021.9566067" @default.
- W3209116923 hasPublicationYear "2021" @default.
- W3209116923 type Work @default.
- W3209116923 sameAs 3209116923 @default.
- W3209116923 citedByCount "7" @default.
- W3209116923 countsByYear W32091169232021 @default.
- W3209116923 countsByYear W32091169232022 @default.
- W3209116923 crossrefType "proceedings-article" @default.
- W3209116923 hasAuthorship W3209116923A5043722627 @default.
- W3209116923 hasAuthorship W3209116923A5064904219 @default.
- W3209116923 hasAuthorship W3209116923A5077884214 @default.
- W3209116923 hasAuthorship W3209116923A5085899873 @default.
- W3209116923 hasConcept C108583219 @default.
- W3209116923 hasConcept C115961682 @default.
- W3209116923 hasConcept C119857082 @default.
- W3209116923 hasConcept C138885662 @default.
- W3209116923 hasConcept C150899416 @default.
- W3209116923 hasConcept C153180895 @default.
- W3209116923 hasConcept C154945302 @default.
- W3209116923 hasConcept C2776151529 @default.
- W3209116923 hasConcept C2776401178 @default.
- W3209116923 hasConcept C41008148 @default.
- W3209116923 hasConcept C41895202 @default.
- W3209116923 hasConcept C52622490 @default.
- W3209116923 hasConcept C75294576 @default.
- W3209116923 hasConcept C81363708 @default.
- W3209116923 hasConceptScore W3209116923C108583219 @default.
- W3209116923 hasConceptScore W3209116923C115961682 @default.
- W3209116923 hasConceptScore W3209116923C119857082 @default.
- W3209116923 hasConceptScore W3209116923C138885662 @default.
- W3209116923 hasConceptScore W3209116923C150899416 @default.
- W3209116923 hasConceptScore W3209116923C153180895 @default.
- W3209116923 hasConceptScore W3209116923C154945302 @default.
- W3209116923 hasConceptScore W3209116923C2776151529 @default.
- W3209116923 hasConceptScore W3209116923C2776401178 @default.
- W3209116923 hasConceptScore W3209116923C41008148 @default.
- W3209116923 hasConceptScore W3209116923C41895202 @default.
- W3209116923 hasConceptScore W3209116923C52622490 @default.
- W3209116923 hasConceptScore W3209116923C75294576 @default.
- W3209116923 hasConceptScore W3209116923C81363708 @default.
- W3209116923 hasLocation W32091169231 @default.
- W3209116923 hasOpenAccess W3209116923 @default.
- W3209116923 hasPrimaryLocation W32091169231 @default.
- W3209116923 hasRelatedWork W2253429366 @default.
- W3209116923 hasRelatedWork W2952813363 @default.
- W3209116923 hasRelatedWork W3003905048 @default.
- W3209116923 hasRelatedWork W3127975138 @default.
- W3209116923 hasRelatedWork W3135818718 @default.
- W3209116923 hasRelatedWork W3167935049 @default.
- W3209116923 hasRelatedWork W3176438653 @default.
- W3209116923 hasRelatedWork W3183901164 @default.
- W3209116923 hasRelatedWork W4290188444 @default.
- W3209116923 hasRelatedWork W2969228573 @default.
- W3209116923 isParatext "false" @default.
- W3209116923 isRetracted "false" @default.
- W3209116923 magId "3209116923" @default.
- W3209116923 workType "article" @default.