Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209144443> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3209144443 abstract "In any organization, the technique used to acquire new users is by Customer Relationship Management systems. In order to achieve more profitability with increase in customer retention is by maintaining a healthy association with them. Customer Churn is also known as Customer Loyalty or Retention. The inspiration behind churn forecast is to categorize and discover clients into churner & non-churner. A churned client implies there is a greater chance of the client is around to take off from the organization. A novel software can be utilized to discover the clients who will donate increased benefits for the organization. Moreover churn forecast can maintain a strategic distance from the misfortune of income by holding the existing clients. A few procedures are accessible for churn prediction with ensemble and hybrid models. This paper points to anticipate client Churn in banking sector with LSTM model and the data is preprocessed using SMOTE technique to overcome imbalanced information. The work is an extension to predicting customer loyalty in banking sector using Mixed Ensemble and Hybrid model. This paper proposes an accurate way to predict customer churn using LSTM model and the data is preprocessed using SMOTE technique. In this way the framework is more valuable for organizations to discover the clients with more chances to become churn. The results of the evaluation indicated that this is to be the case, the proposed systems for churn prediction performs with an accuracy of 88% and which is much better than the system without SMOTE technique." @default.
- W3209144443 created "2021-11-08" @default.
- W3209144443 creator A5050112464 @default.
- W3209144443 creator A5076798892 @default.
- W3209144443 date "2021-09-02" @default.
- W3209144443 modified "2023-09-24" @default.
- W3209144443 title "LSTM Model to Predict Customer Churn in Banking Sector with SMOTE Data Preprocessing" @default.
- W3209144443 cites W2129088465 @default.
- W3209144443 cites W2147119434 @default.
- W3209144443 cites W2789071465 @default.
- W3209144443 cites W2810764190 @default.
- W3209144443 cites W2900856443 @default.
- W3209144443 cites W2997032147 @default.
- W3209144443 cites W3095606640 @default.
- W3209144443 cites W3133472347 @default.
- W3209144443 cites W3182775702 @default.
- W3209144443 doi "https://doi.org/10.1109/access51619.2021.9563347" @default.
- W3209144443 hasPublicationYear "2021" @default.
- W3209144443 type Work @default.
- W3209144443 sameAs 3209144443 @default.
- W3209144443 citedByCount "0" @default.
- W3209144443 crossrefType "proceedings-article" @default.
- W3209144443 hasAuthorship W3209144443A5050112464 @default.
- W3209144443 hasAuthorship W3209144443A5076798892 @default.
- W3209144443 hasConcept C101276457 @default.
- W3209144443 hasConcept C10138342 @default.
- W3209144443 hasConcept C10551718 @default.
- W3209144443 hasConcept C119857082 @default.
- W3209144443 hasConcept C124101348 @default.
- W3209144443 hasConcept C129361004 @default.
- W3209144443 hasConcept C140781008 @default.
- W3209144443 hasConcept C144133560 @default.
- W3209144443 hasConcept C146897074 @default.
- W3209144443 hasConcept C154945302 @default.
- W3209144443 hasConcept C162853370 @default.
- W3209144443 hasConcept C2780378061 @default.
- W3209144443 hasConcept C34736171 @default.
- W3209144443 hasConcept C41008148 @default.
- W3209144443 hasConcept C57660159 @default.
- W3209144443 hasConcept C77088390 @default.
- W3209144443 hasConcept C98825075 @default.
- W3209144443 hasConceptScore W3209144443C101276457 @default.
- W3209144443 hasConceptScore W3209144443C10138342 @default.
- W3209144443 hasConceptScore W3209144443C10551718 @default.
- W3209144443 hasConceptScore W3209144443C119857082 @default.
- W3209144443 hasConceptScore W3209144443C124101348 @default.
- W3209144443 hasConceptScore W3209144443C129361004 @default.
- W3209144443 hasConceptScore W3209144443C140781008 @default.
- W3209144443 hasConceptScore W3209144443C144133560 @default.
- W3209144443 hasConceptScore W3209144443C146897074 @default.
- W3209144443 hasConceptScore W3209144443C154945302 @default.
- W3209144443 hasConceptScore W3209144443C162853370 @default.
- W3209144443 hasConceptScore W3209144443C2780378061 @default.
- W3209144443 hasConceptScore W3209144443C34736171 @default.
- W3209144443 hasConceptScore W3209144443C41008148 @default.
- W3209144443 hasConceptScore W3209144443C57660159 @default.
- W3209144443 hasConceptScore W3209144443C77088390 @default.
- W3209144443 hasConceptScore W3209144443C98825075 @default.
- W3209144443 hasLocation W32091444431 @default.
- W3209144443 hasOpenAccess W3209144443 @default.
- W3209144443 hasPrimaryLocation W32091444431 @default.
- W3209144443 hasRelatedWork W2180046770 @default.
- W3209144443 hasRelatedWork W2316933351 @default.
- W3209144443 hasRelatedWork W2336180536 @default.
- W3209144443 hasRelatedWork W2341950648 @default.
- W3209144443 hasRelatedWork W2904059087 @default.
- W3209144443 hasRelatedWork W3027489241 @default.
- W3209144443 hasRelatedWork W3138943511 @default.
- W3209144443 hasRelatedWork W3197887374 @default.
- W3209144443 hasRelatedWork W3209144443 @default.
- W3209144443 hasRelatedWork W2186123712 @default.
- W3209144443 isParatext "false" @default.
- W3209144443 isRetracted "false" @default.
- W3209144443 magId "3209144443" @default.
- W3209144443 workType "article" @default.