Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209187831> ?p ?o ?g. }
- W3209187831 endingPage "107060" @default.
- W3209187831 startingPage "107060" @default.
- W3209187831 abstract "This paper aims to thermodynamically and economically discuss the role of nanoparticle size on a CI engine performance. Accordingly, three different sizes (28, 45, and 200 nm) of titanium oxide nanoparticles are added into the canola oil methyl ester-diesel blends (C10) at the same mass fractions of 100 ppm. The experiments were conducted on a single-cylinder, air-cooled diesel engine. During the experiments, the engine speed was constant at 1800 rpm, and the engine was loaded from 2.5 and 10 Nm with gaps of 2.5 Nm. It is seen that the viscosity, heating value, and cetane number of the resultant test fuels dropped as the particle size gets smaller. In the results, brake-specific fuel consumption (BSFC) initially increased by 5.5% with the biodiesel added into diesel fuel. However, the addition of nanoparticles noteworthy dropped the BSFC value by roundly 16.91% for C10 + 28 nm TiO2, 12.97% for C10 + 45 nm TiO2, and 10.24% for C10 + 200 nm TiO2. As the engine load increases, BSFC dropped and energy as well as exergy efficiencies for each test fuel improved. The efficiency of the first and second laws at 12 Nm is found to be 25.97% and 24.37% for DF, 25.36% and 23.77% for C10, 27.60% and 25.88% for C10 + 28 nm TiO2, 27.03% and 25.34% for C10 + 45 nm TiO2, 26.65% and 24.99% for C10 + 200 nm TiO2, respectively. Collectively, average energy efficiencies of test fuels are 6.65% bigger than exergy efficiencies. On the other hand, it is noticed that the energy loss rate, energy rate, exergy rate, exergy loss rate, exergy destruction rate, and thermoeconomic metrics are increasing with any increment in engine load for each test fuel. The lowest values of energy and exergy efficiency benchmarks are found for C10 test fuel, while the highest ones are detected for C10 + 28 nm TiO2 test fuel. The addition of nanoparticles considerably increases the unit cost and specific exergy cost of test fuels. Despite their high unit costs, the most suitable fuels in terms of both exergoeconomic, and sustainability aspects are, nevertheless, the nanoparticles-added fuels due to their high exergy efficiencies. In the conclusion, this paper declares that the particle size of nanomaterials is a very effective physical property on the IC engine performance, and the small particle sizes of the same type nanoparticles should be preferred in terms of better energy, exergy, thermoeconomic, exergoeconomic, and sustainability results." @default.
- W3209187831 created "2021-11-08" @default.
- W3209187831 creator A5084774480 @default.
- W3209187831 date "2022-01-01" @default.
- W3209187831 modified "2023-10-18" @default.
- W3209187831 title "Understanding the role of nanoparticle size on energy, exergy, thermoeconomic, exergoeconomic, and sustainability analyses of an IC engine: A thermodynamic approach" @default.
- W3209187831 cites W1925978080 @default.
- W3209187831 cites W1940499382 @default.
- W3209187831 cites W2009694865 @default.
- W3209187831 cites W2022618718 @default.
- W3209187831 cites W2024834144 @default.
- W3209187831 cites W2038859984 @default.
- W3209187831 cites W2041277690 @default.
- W3209187831 cites W2053331638 @default.
- W3209187831 cites W2054640543 @default.
- W3209187831 cites W2177620925 @default.
- W3209187831 cites W2222382882 @default.
- W3209187831 cites W2235878471 @default.
- W3209187831 cites W2326835144 @default.
- W3209187831 cites W2542795895 @default.
- W3209187831 cites W2594309008 @default.
- W3209187831 cites W2618713064 @default.
- W3209187831 cites W2733503604 @default.
- W3209187831 cites W2747791308 @default.
- W3209187831 cites W2753590115 @default.
- W3209187831 cites W2758173143 @default.
- W3209187831 cites W2760182262 @default.
- W3209187831 cites W2764224191 @default.
- W3209187831 cites W2807725189 @default.
- W3209187831 cites W2862532127 @default.
- W3209187831 cites W2885391086 @default.
- W3209187831 cites W2898244609 @default.
- W3209187831 cites W2901191050 @default.
- W3209187831 cites W2902214405 @default.
- W3209187831 cites W2916285555 @default.
- W3209187831 cites W2921314843 @default.
- W3209187831 cites W2921315023 @default.
- W3209187831 cites W2953455331 @default.
- W3209187831 cites W2963571284 @default.
- W3209187831 cites W2971940952 @default.
- W3209187831 cites W2984026945 @default.
- W3209187831 cites W2998395947 @default.
- W3209187831 cites W2999105727 @default.
- W3209187831 cites W3002952511 @default.
- W3209187831 cites W3006002232 @default.
- W3209187831 cites W3006723896 @default.
- W3209187831 cites W3010000123 @default.
- W3209187831 cites W3014313791 @default.
- W3209187831 cites W3020743997 @default.
- W3209187831 cites W3023637241 @default.
- W3209187831 cites W3023937057 @default.
- W3209187831 cites W3031534601 @default.
- W3209187831 cites W3035401021 @default.
- W3209187831 cites W3036810179 @default.
- W3209187831 cites W3038792231 @default.
- W3209187831 cites W3047468984 @default.
- W3209187831 cites W3047785953 @default.
- W3209187831 cites W3080210916 @default.
- W3209187831 cites W3082611252 @default.
- W3209187831 cites W3086508362 @default.
- W3209187831 cites W3086823125 @default.
- W3209187831 cites W3087472517 @default.
- W3209187831 cites W3092695069 @default.
- W3209187831 cites W3093099171 @default.
- W3209187831 cites W3093242224 @default.
- W3209187831 cites W3093794500 @default.
- W3209187831 cites W3093815341 @default.
- W3209187831 cites W3094776847 @default.
- W3209187831 cites W3095392193 @default.
- W3209187831 cites W3096996448 @default.
- W3209187831 cites W3105653065 @default.
- W3209187831 cites W3107980652 @default.
- W3209187831 cites W3108907326 @default.
- W3209187831 cites W3111737310 @default.
- W3209187831 cites W3113889886 @default.
- W3209187831 cites W3123001812 @default.
- W3209187831 cites W3124832205 @default.
- W3209187831 cites W3127716553 @default.
- W3209187831 cites W3128060525 @default.
- W3209187831 cites W3128218728 @default.
- W3209187831 cites W3128332611 @default.
- W3209187831 cites W3132670113 @default.
- W3209187831 cites W3133462958 @default.
- W3209187831 cites W3134664801 @default.
- W3209187831 cites W3135384036 @default.
- W3209187831 cites W3136284433 @default.
- W3209187831 cites W3137330269 @default.
- W3209187831 cites W3139352690 @default.
- W3209187831 cites W3153428101 @default.
- W3209187831 cites W3154882433 @default.
- W3209187831 cites W3160144379 @default.
- W3209187831 cites W4251497720 @default.
- W3209187831 doi "https://doi.org/10.1016/j.fuproc.2021.107060" @default.
- W3209187831 hasPublicationYear "2022" @default.
- W3209187831 type Work @default.
- W3209187831 sameAs 3209187831 @default.
- W3209187831 citedByCount "37" @default.
- W3209187831 countsByYear W32091878312022 @default.