Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209199687> ?p ?o ?g. }
- W3209199687 endingPage "114218" @default.
- W3209199687 startingPage "114218" @default.
- W3209199687 abstract "The accurate estimations of the failure probability with low-computational burden play a vital role in structural reliability analyses. Due to high-calculation cost and time-consuming Monte Carlo simulation (MCS), this paper focused on developing a novel enhanced MCS approach with an advanced machine learning method, namely hybrid enhanced MCS (HEMCS), for achieving accurate approximation of failure probability with high-efficiency computations. The failure probability is approximated by a probabilistic model using a scalar factor less than one which is multiplied on the capacity term of performance function. An adaptive input for scalar factor is proposed by the coefficient of variation of failure probability for active region in the training process of artificial neural network (ANN) with multilayer back-propagation algorithm. Four analytical optimization training approaches, active region and number of hidden nodes are discussed for accurate approximation of ANN models. The results of the HEMCS are compared with several analytical reliability methods for numerous engineering problems. Laminated composite plate and turbine bladed disk are selected to illustrate the capability of HEMCS for approximation of failure probability. The proposed method provides higher flexibility for the prediction of failure probability when compared to the enhanced MCS which also offers significantly more accurate and computationally efficient results for high-nonlinear problems." @default.
- W3209199687 created "2021-11-08" @default.
- W3209199687 creator A5049427526 @default.
- W3209199687 creator A5053055324 @default.
- W3209199687 creator A5054148217 @default.
- W3209199687 creator A5054651399 @default.
- W3209199687 creator A5084113473 @default.
- W3209199687 date "2022-01-01" @default.
- W3209199687 modified "2023-10-15" @default.
- W3209199687 title "Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis" @default.
- W3209199687 cites W1901616594 @default.
- W3209199687 cites W1978031052 @default.
- W3209199687 cites W1981567151 @default.
- W3209199687 cites W1995077217 @default.
- W3209199687 cites W1999091229 @default.
- W3209199687 cites W2009999380 @default.
- W3209199687 cites W2017089693 @default.
- W3209199687 cites W2023769053 @default.
- W3209199687 cites W2024524581 @default.
- W3209199687 cites W2030104589 @default.
- W3209199687 cites W2040099098 @default.
- W3209199687 cites W2045644796 @default.
- W3209199687 cites W2050288398 @default.
- W3209199687 cites W2064903049 @default.
- W3209199687 cites W2065891872 @default.
- W3209199687 cites W2073618811 @default.
- W3209199687 cites W2085351890 @default.
- W3209199687 cites W2087320074 @default.
- W3209199687 cites W2126583337 @default.
- W3209199687 cites W2132461247 @default.
- W3209199687 cites W2143840160 @default.
- W3209199687 cites W2147339140 @default.
- W3209199687 cites W2207320530 @default.
- W3209199687 cites W2298816791 @default.
- W3209199687 cites W2404860312 @default.
- W3209199687 cites W2472783978 @default.
- W3209199687 cites W2518025100 @default.
- W3209199687 cites W2549279661 @default.
- W3209199687 cites W2565599319 @default.
- W3209199687 cites W2622472311 @default.
- W3209199687 cites W2626215932 @default.
- W3209199687 cites W2777966713 @default.
- W3209199687 cites W2802654927 @default.
- W3209199687 cites W2809738900 @default.
- W3209199687 cites W2883783342 @default.
- W3209199687 cites W2885733747 @default.
- W3209199687 cites W2888340317 @default.
- W3209199687 cites W2895906731 @default.
- W3209199687 cites W2896845269 @default.
- W3209199687 cites W2908794637 @default.
- W3209199687 cites W2910830800 @default.
- W3209199687 cites W2950751842 @default.
- W3209199687 cites W2952474821 @default.
- W3209199687 cites W2954654691 @default.
- W3209199687 cites W2971813394 @default.
- W3209199687 cites W2979387230 @default.
- W3209199687 cites W2979585937 @default.
- W3209199687 cites W3008510448 @default.
- W3209199687 cites W3010795939 @default.
- W3209199687 cites W3011163836 @default.
- W3209199687 cites W3011377183 @default.
- W3209199687 cites W3015949336 @default.
- W3209199687 cites W3025605929 @default.
- W3209199687 cites W3027089092 @default.
- W3209199687 cites W3030285919 @default.
- W3209199687 cites W3039856333 @default.
- W3209199687 cites W3082758367 @default.
- W3209199687 cites W3092006514 @default.
- W3209199687 cites W3101764990 @default.
- W3209199687 cites W3104938539 @default.
- W3209199687 cites W3111642506 @default.
- W3209199687 cites W3156155631 @default.
- W3209199687 cites W3163074456 @default.
- W3209199687 cites W3165998946 @default.
- W3209199687 doi "https://doi.org/10.1016/j.cma.2021.114218" @default.
- W3209199687 hasPublicationYear "2022" @default.
- W3209199687 type Work @default.
- W3209199687 sameAs 3209199687 @default.
- W3209199687 citedByCount "68" @default.
- W3209199687 countsByYear W32091996872022 @default.
- W3209199687 countsByYear W32091996872023 @default.
- W3209199687 crossrefType "journal-article" @default.
- W3209199687 hasAuthorship W3209199687A5049427526 @default.
- W3209199687 hasAuthorship W3209199687A5053055324 @default.
- W3209199687 hasAuthorship W3209199687A5054148217 @default.
- W3209199687 hasAuthorship W3209199687A5054651399 @default.
- W3209199687 hasAuthorship W3209199687A5084113473 @default.
- W3209199687 hasConcept C105795698 @default.
- W3209199687 hasConcept C11413529 @default.
- W3209199687 hasConcept C119857082 @default.
- W3209199687 hasConcept C121332964 @default.
- W3209199687 hasConcept C126255220 @default.
- W3209199687 hasConcept C149441793 @default.
- W3209199687 hasConcept C154945302 @default.
- W3209199687 hasConcept C163258240 @default.
- W3209199687 hasConcept C19499675 @default.
- W3209199687 hasConcept C197055811 @default.
- W3209199687 hasConcept C2524010 @default.