Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209204920> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3209204920 abstract "Research on alternative energy sources has been increasing for the past years due to environmental concerns and the depletion of fossil fuels. Since photovoltaic generation is intermittent, one needs to predict solar incidence to alleviate problems due to demand surges in conventional distribution systems.Many works have used Long Short-Term Memory (LSTMs) to predict generation. However, to minimize computational costs related to retraining and inference, LSTMs might not be optimal. Therefore, in this work, we compare the performance of MLP (Multilayer Perceptron), Recurrent Neural Networks (RNNs), and LSTMs for the task mentioned above. We used the solar radiance measured throughout 2020 in the city of Maceió (Brazil), taking into account periods of 2 hours for training to predict the next 5-minutes. Hyperparameters were fine-tuned using an optimization approach based on Bayesian inference to promote a fair comparison. Results showed that the MLP has satisfactory performance, requiring much less time to train and forecast. Such results can contribute, for example, to improving response time in embedded systems." @default.
- W3209204920 created "2021-11-08" @default.
- W3209204920 creator A5001876458 @default.
- W3209204920 creator A5032840373 @default.
- W3209204920 creator A5067862742 @default.
- W3209204920 creator A5069205621 @default.
- W3209204920 creator A5072777975 @default.
- W3209204920 creator A5078610076 @default.
- W3209204920 creator A5081399590 @default.
- W3209204920 date "2021-01-01" @default.
- W3209204920 modified "2023-09-26" @default.
- W3209204920 title "Comparing Neural Network Models for Photovoltaic Power Generation Prediction" @default.
- W3209204920 cites W1728842521 @default.
- W3209204920 cites W1977362693 @default.
- W3209204920 cites W2062989416 @default.
- W3209204920 cites W2064675550 @default.
- W3209204920 cites W2070826863 @default.
- W3209204920 cites W2536257702 @default.
- W3209204920 cites W2894480095 @default.
- W3209204920 cites W2919115771 @default.
- W3209204920 cites W2921835983 @default.
- W3209204920 cites W2942124302 @default.
- W3209204920 cites W2963815651 @default.
- W3209204920 cites W2964121744 @default.
- W3209204920 cites W3014822860 @default.
- W3209204920 cites W3143204426 @default.
- W3209204920 doi "https://doi.org/10.21528/cbic2021-110" @default.
- W3209204920 hasPublicationYear "2021" @default.
- W3209204920 type Work @default.
- W3209204920 sameAs 3209204920 @default.
- W3209204920 citedByCount "0" @default.
- W3209204920 crossrefType "proceedings-article" @default.
- W3209204920 hasAuthorship W3209204920A5001876458 @default.
- W3209204920 hasAuthorship W3209204920A5032840373 @default.
- W3209204920 hasAuthorship W3209204920A5067862742 @default.
- W3209204920 hasAuthorship W3209204920A5069205621 @default.
- W3209204920 hasAuthorship W3209204920A5072777975 @default.
- W3209204920 hasAuthorship W3209204920A5078610076 @default.
- W3209204920 hasAuthorship W3209204920A5081399590 @default.
- W3209204920 hasBestOaLocation W32092049201 @default.
- W3209204920 hasConcept C119599485 @default.
- W3209204920 hasConcept C119857082 @default.
- W3209204920 hasConcept C127413603 @default.
- W3209204920 hasConcept C147168706 @default.
- W3209204920 hasConcept C154945302 @default.
- W3209204920 hasConcept C179717631 @default.
- W3209204920 hasConcept C2776214188 @default.
- W3209204920 hasConcept C2778049539 @default.
- W3209204920 hasConcept C41008148 @default.
- W3209204920 hasConcept C41291067 @default.
- W3209204920 hasConcept C50644808 @default.
- W3209204920 hasConcept C8642999 @default.
- W3209204920 hasConceptScore W3209204920C119599485 @default.
- W3209204920 hasConceptScore W3209204920C119857082 @default.
- W3209204920 hasConceptScore W3209204920C127413603 @default.
- W3209204920 hasConceptScore W3209204920C147168706 @default.
- W3209204920 hasConceptScore W3209204920C154945302 @default.
- W3209204920 hasConceptScore W3209204920C179717631 @default.
- W3209204920 hasConceptScore W3209204920C2776214188 @default.
- W3209204920 hasConceptScore W3209204920C2778049539 @default.
- W3209204920 hasConceptScore W3209204920C41008148 @default.
- W3209204920 hasConceptScore W3209204920C41291067 @default.
- W3209204920 hasConceptScore W3209204920C50644808 @default.
- W3209204920 hasConceptScore W3209204920C8642999 @default.
- W3209204920 hasLocation W32092049201 @default.
- W3209204920 hasOpenAccess W3209204920 @default.
- W3209204920 hasPrimaryLocation W32092049201 @default.
- W3209204920 hasRelatedWork W10786582 @default.
- W3209204920 hasRelatedWork W11356396 @default.
- W3209204920 hasRelatedWork W13426584 @default.
- W3209204920 hasRelatedWork W13538861 @default.
- W3209204920 hasRelatedWork W349990 @default.
- W3209204920 hasRelatedWork W482721 @default.
- W3209204920 hasRelatedWork W6680660 @default.
- W3209204920 hasRelatedWork W7339520 @default.
- W3209204920 hasRelatedWork W9321062 @default.
- W3209204920 hasRelatedWork W2925925 @default.
- W3209204920 isParatext "false" @default.
- W3209204920 isRetracted "false" @default.
- W3209204920 magId "3209204920" @default.
- W3209204920 workType "article" @default.