Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209212059> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3209212059 endingPage "100040" @default.
- W3209212059 startingPage "100040" @default.
- W3209212059 abstract "Reliable and accurate day-ahead forecasting of natural gas consumption is vital for the operation of the Energy sector. Three different forecasting models are developed in this paper: The sigmoid function regression model, the feed-forward neural network, and the recurrent neural network model. The models were trained, compared, and validated using gas consumption data from 115 measuring stations in Slovenia and Croatia, which have been in operation for more than three years. The Genetic optimisation algorithm was used to train the neural networks and the Levenberg-Marquardt algorithm was used to obtain the parameters of the sigmoid model. The results show that both neural network models perform similarly, and are superior to the sigmoid model. The models were prepared for use in conjunction with a weather forecasting service to generate day-ahead or within-day forecasts, and are applicable to any geographical area. The neural network models achieve mean absolute percentage error between 5% and 10% in the entire temperature range. The sigmoid model reaches similar accuracy only for temperatures below 5°C, while for higher temperatures the error reaches up to 30%–40%." @default.
- W3209212059 created "2021-11-08" @default.
- W3209212059 creator A5024924112 @default.
- W3209212059 creator A5048117633 @default.
- W3209212059 creator A5050751021 @default.
- W3209212059 creator A5062251100 @default.
- W3209212059 creator A5072290473 @default.
- W3209212059 date "2021-12-01" @default.
- W3209212059 modified "2023-09-27" @default.
- W3209212059 title "A sigmoid regression and artificial neural network models for day-ahead natural gas usage forecasting" @default.
- W3209212059 cites W1963687576 @default.
- W3209212059 cites W1965699533 @default.
- W3209212059 cites W1973951213 @default.
- W3209212059 cites W1977432880 @default.
- W3209212059 cites W1979373126 @default.
- W3209212059 cites W1981865106 @default.
- W3209212059 cites W1985810808 @default.
- W3209212059 cites W2007375405 @default.
- W3209212059 cites W2019440544 @default.
- W3209212059 cites W2020995787 @default.
- W3209212059 cites W2037123796 @default.
- W3209212059 cites W2044971577 @default.
- W3209212059 cites W2056222127 @default.
- W3209212059 cites W2075445042 @default.
- W3209212059 cites W2092514020 @default.
- W3209212059 cites W2182392273 @default.
- W3209212059 cites W2187765056 @default.
- W3209212059 cites W2410873590 @default.
- W3209212059 cites W2494809744 @default.
- W3209212059 cites W2566970311 @default.
- W3209212059 cites W2577555784 @default.
- W3209212059 cites W2580674758 @default.
- W3209212059 cites W2582412713 @default.
- W3209212059 cites W2606233713 @default.
- W3209212059 cites W2620918505 @default.
- W3209212059 cites W2624108541 @default.
- W3209212059 cites W2751910435 @default.
- W3209212059 cites W2793565565 @default.
- W3209212059 cites W2796072231 @default.
- W3209212059 cites W2899195838 @default.
- W3209212059 cites W2921748836 @default.
- W3209212059 cites W2936287033 @default.
- W3209212059 cites W2946065071 @default.
- W3209212059 cites W3000710817 @default.
- W3209212059 cites W3006485382 @default.
- W3209212059 cites W3084626771 @default.
- W3209212059 doi "https://doi.org/10.1016/j.clrc.2021.100040" @default.
- W3209212059 hasPublicationYear "2021" @default.
- W3209212059 type Work @default.
- W3209212059 sameAs 3209212059 @default.
- W3209212059 citedByCount "6" @default.
- W3209212059 countsByYear W32092120592022 @default.
- W3209212059 countsByYear W32092120592023 @default.
- W3209212059 crossrefType "journal-article" @default.
- W3209212059 hasAuthorship W3209212059A5024924112 @default.
- W3209212059 hasAuthorship W3209212059A5048117633 @default.
- W3209212059 hasAuthorship W3209212059A5050751021 @default.
- W3209212059 hasAuthorship W3209212059A5062251100 @default.
- W3209212059 hasAuthorship W3209212059A5072290473 @default.
- W3209212059 hasBestOaLocation W32092120591 @default.
- W3209212059 hasConcept C127413603 @default.
- W3209212059 hasConcept C146978453 @default.
- W3209212059 hasConcept C150217764 @default.
- W3209212059 hasConcept C154945302 @default.
- W3209212059 hasConcept C204323151 @default.
- W3209212059 hasConcept C41008148 @default.
- W3209212059 hasConcept C50644808 @default.
- W3209212059 hasConcept C81388566 @default.
- W3209212059 hasConceptScore W3209212059C127413603 @default.
- W3209212059 hasConceptScore W3209212059C146978453 @default.
- W3209212059 hasConceptScore W3209212059C150217764 @default.
- W3209212059 hasConceptScore W3209212059C154945302 @default.
- W3209212059 hasConceptScore W3209212059C204323151 @default.
- W3209212059 hasConceptScore W3209212059C41008148 @default.
- W3209212059 hasConceptScore W3209212059C50644808 @default.
- W3209212059 hasConceptScore W3209212059C81388566 @default.
- W3209212059 hasLocation W32092120591 @default.
- W3209212059 hasLocation W32092120592 @default.
- W3209212059 hasOpenAccess W3209212059 @default.
- W3209212059 hasPrimaryLocation W32092120591 @default.
- W3209212059 hasRelatedWork W1564317318 @default.
- W3209212059 hasRelatedWork W2353546784 @default.
- W3209212059 hasRelatedWork W2386387936 @default.
- W3209212059 hasRelatedWork W2414384473 @default.
- W3209212059 hasRelatedWork W2986094345 @default.
- W3209212059 hasRelatedWork W3107474891 @default.
- W3209212059 hasRelatedWork W3123157847 @default.
- W3209212059 hasRelatedWork W3170224572 @default.
- W3209212059 hasRelatedWork W3209212059 @default.
- W3209212059 hasRelatedWork W4318259904 @default.
- W3209212059 hasVolume "3" @default.
- W3209212059 isParatext "false" @default.
- W3209212059 isRetracted "false" @default.
- W3209212059 magId "3209212059" @default.
- W3209212059 workType "article" @default.