Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209242007> ?p ?o ?g. }
- W3209242007 endingPage "1049" @default.
- W3209242007 startingPage "1049" @default.
- W3209242007 abstract "This paper presents a mechanical control method for precise weeding based on deep learning. Deep convolutional neural network was used to identify and locate weeds. A special modular weeder was designed, which can be installed on the rear of a mobile platform. An inverted pyramid-shaped weeding tool equipped in the modular weeder can shovel out weeds without being contaminated by soil. The weed detection and control method was implemented on an embedded system with a high-speed graphics processing unit and integrated with the weeder. The experimental results showed that even if the speed of the mobile platform reaches 20 cm/s, the weeds can still be accurately detected and the position of the weeds can be located by the system. Moreover, the weeding mechanism can successfully shovel out the roots of the weeds. The proposed weeder has been tested in the field, and its performance and weed coverage have been verified to be precise for weeding." @default.
- W3209242007 created "2021-11-08" @default.
- W3209242007 creator A5023659248 @default.
- W3209242007 creator A5053866819 @default.
- W3209242007 creator A5063001575 @default.
- W3209242007 date "2021-10-26" @default.
- W3209242007 modified "2023-10-14" @default.
- W3209242007 title "Mechanical Control with a Deep Learning Method for Precise Weeding on a Farm" @default.
- W3209242007 cites W1525257406 @default.
- W3209242007 cites W1600079720 @default.
- W3209242007 cites W1973788747 @default.
- W3209242007 cites W1994217151 @default.
- W3209242007 cites W2021496016 @default.
- W3209242007 cites W2022376010 @default.
- W3209242007 cites W2041137640 @default.
- W3209242007 cites W2063339119 @default.
- W3209242007 cites W2071128323 @default.
- W3209242007 cites W2086569847 @default.
- W3209242007 cites W2092603951 @default.
- W3209242007 cites W2094651390 @default.
- W3209242007 cites W2122919861 @default.
- W3209242007 cites W2130649787 @default.
- W3209242007 cites W2152525636 @default.
- W3209242007 cites W2254106841 @default.
- W3209242007 cites W2520364485 @default.
- W3209242007 cites W2586608994 @default.
- W3209242007 cites W2587218622 @default.
- W3209242007 cites W2621041003 @default.
- W3209242007 cites W2781967587 @default.
- W3209242007 cites W2787095293 @default.
- W3209242007 cites W2790979755 @default.
- W3209242007 cites W2799292618 @default.
- W3209242007 cites W2810270273 @default.
- W3209242007 cites W2883454019 @default.
- W3209242007 cites W2885770726 @default.
- W3209242007 cites W2889730635 @default.
- W3209242007 cites W2896736480 @default.
- W3209242007 cites W2898498213 @default.
- W3209242007 cites W2908783980 @default.
- W3209242007 cites W2909214268 @default.
- W3209242007 cites W2910919603 @default.
- W3209242007 cites W2913227116 @default.
- W3209242007 cites W2915011392 @default.
- W3209242007 cites W2920621226 @default.
- W3209242007 cites W2970422278 @default.
- W3209242007 cites W2999397506 @default.
- W3209242007 cites W3000068832 @default.
- W3209242007 cites W3016591091 @default.
- W3209242007 cites W3018965423 @default.
- W3209242007 cites W3029266780 @default.
- W3209242007 cites W3037931947 @default.
- W3209242007 cites W3041798200 @default.
- W3209242007 cites W3082499117 @default.
- W3209242007 cites W3087902399 @default.
- W3209242007 cites W3093467803 @default.
- W3209242007 cites W3115859782 @default.
- W3209242007 cites W3129775676 @default.
- W3209242007 cites W3136376090 @default.
- W3209242007 cites W3136950817 @default.
- W3209242007 cites W3155115887 @default.
- W3209242007 cites W3165807380 @default.
- W3209242007 doi "https://doi.org/10.3390/agriculture11111049" @default.
- W3209242007 hasPublicationYear "2021" @default.
- W3209242007 type Work @default.
- W3209242007 sameAs 3209242007 @default.
- W3209242007 citedByCount "13" @default.
- W3209242007 countsByYear W32092420072022 @default.
- W3209242007 countsByYear W32092420072023 @default.
- W3209242007 crossrefType "journal-article" @default.
- W3209242007 hasAuthorship W3209242007A5023659248 @default.
- W3209242007 hasAuthorship W3209242007A5053866819 @default.
- W3209242007 hasAuthorship W3209242007A5063001575 @default.
- W3209242007 hasBestOaLocation W32092420071 @default.
- W3209242007 hasConcept C101468663 @default.
- W3209242007 hasConcept C111919701 @default.
- W3209242007 hasConcept C127413603 @default.
- W3209242007 hasConcept C147273371 @default.
- W3209242007 hasConcept C154945302 @default.
- W3209242007 hasConcept C2781458734 @default.
- W3209242007 hasConcept C41008148 @default.
- W3209242007 hasConcept C6557445 @default.
- W3209242007 hasConcept C78519656 @default.
- W3209242007 hasConcept C86803240 @default.
- W3209242007 hasConcept C88463610 @default.
- W3209242007 hasConceptScore W3209242007C101468663 @default.
- W3209242007 hasConceptScore W3209242007C111919701 @default.
- W3209242007 hasConceptScore W3209242007C127413603 @default.
- W3209242007 hasConceptScore W3209242007C147273371 @default.
- W3209242007 hasConceptScore W3209242007C154945302 @default.
- W3209242007 hasConceptScore W3209242007C2781458734 @default.
- W3209242007 hasConceptScore W3209242007C41008148 @default.
- W3209242007 hasConceptScore W3209242007C6557445 @default.
- W3209242007 hasConceptScore W3209242007C78519656 @default.
- W3209242007 hasConceptScore W3209242007C86803240 @default.
- W3209242007 hasConceptScore W3209242007C88463610 @default.
- W3209242007 hasFunder F4320322795 @default.
- W3209242007 hasIssue "11" @default.
- W3209242007 hasLocation W32092420071 @default.