Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209255587> ?p ?o ?g. }
- W3209255587 endingPage "2439" @default.
- W3209255587 startingPage "2426" @default.
- W3209255587 abstract "Online users are typically active on multiple social media networks (SMNs), which constitute a multiplex social network. With improvements in cybersecurity awareness, users increasingly choose different usernames and provide different profiles on different SMNs. Thus, it is becoming increasingly challenging to determine whether given accounts on different SMNs belong to the same user; this can be expressed as an interlayer link prediction problem in a multiplex network. To address the challenge of predicting interlayer links, feature or structure information is leveraged. Existing methods that use network embedding techniques to address this problem focus on learning a mapping function to unify all nodes into a common latent representation space for prediction; positional relationships between unmatched nodes and their common matched neighbors (CMNs) are not utilized. Furthermore, the layers are often modeled as unweighted graphs, ignoring the strengths of the relationships between nodes. To address these limitations, we propose a framework based on multiple types of consistency between embedding vectors (MulCEVs). In MulCEV, the traditional embedding-based method is applied to obtain the degree of consistency between the vectors representing the unmatched nodes, and a proposed distance consistency index based on the positions of nodes in each latent space provides additional clues for prediction. By associating these two types of consistency, the effective information in the latent spaces is fully utilized. In addition, MulCEV models the layers as weighted graphs to obtain representation. In this way, the higher the strength of the relationship between nodes, the more similar their embedding vectors in the latent representation space will be. The results of our experiments on several real-world and synthetic datasets demonstrate that the proposed MulCEV framework markedly outperforms current embedding-based methods, especially when the number of training iterations is small." @default.
- W3209255587 created "2021-11-08" @default.
- W3209255587 creator A5041917148 @default.
- W3209255587 creator A5042526900 @default.
- W3209255587 creator A5046597133 @default.
- W3209255587 creator A5049744522 @default.
- W3209255587 creator A5054208326 @default.
- W3209255587 creator A5059891662 @default.
- W3209255587 date "2023-04-01" @default.
- W3209255587 modified "2023-10-15" @default.
- W3209255587 title "Interlayer Link Prediction in Multiplex Social Networks Based on Multiple Types of Consistency Between Embedding Vectors" @default.
- W3209255587 cites W1496564895 @default.
- W3209255587 cites W1618470073 @default.
- W3209255587 cites W1767117126 @default.
- W3209255587 cites W1966355874 @default.
- W3209255587 cites W1977149746 @default.
- W3209255587 cites W1980680715 @default.
- W3209255587 cites W2008620264 @default.
- W3209255587 cites W2021999013 @default.
- W3209255587 cites W2038430453 @default.
- W3209255587 cites W2039733986 @default.
- W3209255587 cites W2047532797 @default.
- W3209255587 cites W2056835025 @default.
- W3209255587 cites W2058036501 @default.
- W3209255587 cites W2058156805 @default.
- W3209255587 cites W2075633077 @default.
- W3209255587 cites W2077414053 @default.
- W3209255587 cites W2099540651 @default.
- W3209255587 cites W2102086994 @default.
- W3209255587 cites W2104690989 @default.
- W3209255587 cites W2112090702 @default.
- W3209255587 cites W2113105081 @default.
- W3209255587 cites W2113839561 @default.
- W3209255587 cites W2116405614 @default.
- W3209255587 cites W2141278204 @default.
- W3209255587 cites W2150208547 @default.
- W3209255587 cites W2159675343 @default.
- W3209255587 cites W2178155017 @default.
- W3209255587 cites W2241660235 @default.
- W3209255587 cites W2247394048 @default.
- W3209255587 cites W2339803498 @default.
- W3209255587 cites W2374981910 @default.
- W3209255587 cites W2391555403 @default.
- W3209255587 cites W2405147195 @default.
- W3209255587 cites W2436722960 @default.
- W3209255587 cites W2576852313 @default.
- W3209255587 cites W2598689838 @default.
- W3209255587 cites W2604942799 @default.
- W3209255587 cites W2614745917 @default.
- W3209255587 cites W2777398797 @default.
- W3209255587 cites W2793022729 @default.
- W3209255587 cites W2794523102 @default.
- W3209255587 cites W2800544704 @default.
- W3209255587 cites W2800952572 @default.
- W3209255587 cites W2808087697 @default.
- W3209255587 cites W2808284704 @default.
- W3209255587 cites W2883701735 @default.
- W3209255587 cites W2888119068 @default.
- W3209255587 cites W2888169751 @default.
- W3209255587 cites W2894330012 @default.
- W3209255587 cites W2903692119 @default.
- W3209255587 cites W2904205492 @default.
- W3209255587 cites W2911702602 @default.
- W3209255587 cites W2912505106 @default.
- W3209255587 cites W2912891989 @default.
- W3209255587 cites W2913597926 @default.
- W3209255587 cites W2914065785 @default.
- W3209255587 cites W2914268208 @default.
- W3209255587 cites W2914547623 @default.
- W3209255587 cites W2918992089 @default.
- W3209255587 cites W2919997401 @default.
- W3209255587 cites W2920698537 @default.
- W3209255587 cites W2962756421 @default.
- W3209255587 cites W2962975498 @default.
- W3209255587 cites W2963224980 @default.
- W3209255587 cites W2963512530 @default.
- W3209255587 cites W2963603080 @default.
- W3209255587 cites W2963919031 @default.
- W3209255587 cites W2965916974 @default.
- W3209255587 cites W2995341844 @default.
- W3209255587 cites W3004666086 @default.
- W3209255587 cites W3037826211 @default.
- W3209255587 cites W3098040575 @default.
- W3209255587 cites W3101757562 @default.
- W3209255587 cites W3104097132 @default.
- W3209255587 cites W3104961365 @default.
- W3209255587 cites W3105705953 @default.
- W3209255587 cites W3151491250 @default.
- W3209255587 cites W812851569 @default.
- W3209255587 cites W8932922 @default.
- W3209255587 doi "https://doi.org/10.1109/tcyb.2021.3120134" @default.
- W3209255587 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34735350" @default.
- W3209255587 hasPublicationYear "2023" @default.
- W3209255587 type Work @default.
- W3209255587 sameAs 3209255587 @default.
- W3209255587 citedByCount "3" @default.
- W3209255587 countsByYear W32092555872022 @default.
- W3209255587 countsByYear W32092555872023 @default.