Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209307066> ?p ?o ?g. }
- W3209307066 abstract "Mathematical models in epidemiology are an indispensable tool to determine the dynamics and important characteristics of infectious diseases. Apart from their scientific merit, these models are often used to inform political decisions and intervention measures during an ongoing outbreak. However, reliably inferring the dynamics of ongoing outbreaks by connecting complex models to real data is still hard and requires either laborious manual parameter fitting or expensive optimization methods which have to be repeated from scratch for every application of a given model. In this work, we address this problem with a novel combination of epidemiological modeling with specialized neural networks. Our approach entails two computational phases: In an initial training phase, a mathematical model describing the epidemic is used as a coach for a neural network, which acquires global knowledge about the full range of possible disease dynamics. In the subsequent inference phase, the trained neural network processes the observed data of an actual outbreak and infers the parameters of the model in order to realistically reproduce the observed dynamics and reliably predict future progression. With its flexible framework, our simulation-based approach is applicable to a variety of epidemiological models. Moreover, since our method is fully Bayesian, it is designed to incorporate all available prior knowledge about plausible parameter values and returns complete joint posterior distributions over these parameters. Application of our method to the early Covid-19 outbreak phase in Germany demonstrates that we are able to obtain reliable probabilistic estimates for important disease characteristics, such as generation time, fraction of undetected infections, likelihood of transmission before symptom onset, and reporting delays using a very moderate amount of real-world observations." @default.
- W3209307066 created "2021-11-08" @default.
- W3209307066 creator A5003138186 @default.
- W3209307066 creator A5004723202 @default.
- W3209307066 creator A5010815894 @default.
- W3209307066 creator A5048659639 @default.
- W3209307066 creator A5058044076 @default.
- W3209307066 creator A5066551739 @default.
- W3209307066 creator A5080287965 @default.
- W3209307066 date "2021-11-02" @default.
- W3209307066 modified "2023-09-23" @default.
- W3209307066 title "OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany." @default.
- W3209307066 cites W1965175390 @default.
- W3209307066 cites W2025000283 @default.
- W3209307066 cites W2026653933 @default.
- W3209307066 cites W2032616735 @default.
- W3209307066 cites W2045656233 @default.
- W3209307066 cites W2065069831 @default.
- W3209307066 cites W2097117768 @default.
- W3209307066 cites W2100708780 @default.
- W3209307066 cites W2136848157 @default.
- W3209307066 cites W2166022262 @default.
- W3209307066 cites W2335001735 @default.
- W3209307066 cites W2797452937 @default.
- W3209307066 cites W2915656168 @default.
- W3209307066 cites W2945598669 @default.
- W3209307066 cites W2963218043 @default.
- W3209307066 cites W2963822196 @default.
- W3209307066 cites W3003573988 @default.
- W3209307066 cites W3007580879 @default.
- W3209307066 cites W3008827533 @default.
- W3209307066 cites W3010647567 @default.
- W3209307066 cites W3012284084 @default.
- W3209307066 cites W3013188135 @default.
- W3209307066 cites W3014570987 @default.
- W3209307066 cites W3018228603 @default.
- W3209307066 cites W3022839876 @default.
- W3209307066 cites W3023190093 @default.
- W3209307066 cites W3024403805 @default.
- W3209307066 cites W3025600770 @default.
- W3209307066 cites W3025654679 @default.
- W3209307066 cites W3031514878 @default.
- W3209307066 cites W3032725243 @default.
- W3209307066 cites W3032971139 @default.
- W3209307066 cites W3033219406 @default.
- W3209307066 cites W3035189381 @default.
- W3209307066 cites W3040552450 @default.
- W3209307066 cites W3045997785 @default.
- W3209307066 cites W3101046181 @default.
- W3209307066 cites W3108139339 @default.
- W3209307066 cites W3117021508 @default.
- W3209307066 cites W3158760197 @default.
- W3209307066 cites W3167438434 @default.
- W3209307066 cites W3175666822 @default.
- W3209307066 hasPublicationYear "2021" @default.
- W3209307066 type Work @default.
- W3209307066 sameAs 3209307066 @default.
- W3209307066 citedByCount "0" @default.
- W3209307066 crossrefType "posted-content" @default.
- W3209307066 hasAuthorship W3209307066A5003138186 @default.
- W3209307066 hasAuthorship W3209307066A5004723202 @default.
- W3209307066 hasAuthorship W3209307066A5010815894 @default.
- W3209307066 hasAuthorship W3209307066A5048659639 @default.
- W3209307066 hasAuthorship W3209307066A5058044076 @default.
- W3209307066 hasAuthorship W3209307066A5066551739 @default.
- W3209307066 hasAuthorship W3209307066A5080287965 @default.
- W3209307066 hasConcept C107673813 @default.
- W3209307066 hasConcept C114289077 @default.
- W3209307066 hasConcept C116675565 @default.
- W3209307066 hasConcept C119857082 @default.
- W3209307066 hasConcept C124101348 @default.
- W3209307066 hasConcept C154945302 @default.
- W3209307066 hasConcept C159047783 @default.
- W3209307066 hasConcept C160234255 @default.
- W3209307066 hasConcept C2776214188 @default.
- W3209307066 hasConcept C41008148 @default.
- W3209307066 hasConcept C49937458 @default.
- W3209307066 hasConcept C50644808 @default.
- W3209307066 hasConcept C86803240 @default.
- W3209307066 hasConceptScore W3209307066C107673813 @default.
- W3209307066 hasConceptScore W3209307066C114289077 @default.
- W3209307066 hasConceptScore W3209307066C116675565 @default.
- W3209307066 hasConceptScore W3209307066C119857082 @default.
- W3209307066 hasConceptScore W3209307066C124101348 @default.
- W3209307066 hasConceptScore W3209307066C154945302 @default.
- W3209307066 hasConceptScore W3209307066C159047783 @default.
- W3209307066 hasConceptScore W3209307066C160234255 @default.
- W3209307066 hasConceptScore W3209307066C2776214188 @default.
- W3209307066 hasConceptScore W3209307066C41008148 @default.
- W3209307066 hasConceptScore W3209307066C49937458 @default.
- W3209307066 hasConceptScore W3209307066C50644808 @default.
- W3209307066 hasConceptScore W3209307066C86803240 @default.
- W3209307066 hasOpenAccess W3209307066 @default.
- W3209307066 hasRelatedWork W152970461 @default.
- W3209307066 hasRelatedWork W2750152668 @default.
- W3209307066 hasRelatedWork W2951121905 @default.
- W3209307066 hasRelatedWork W2952771280 @default.
- W3209307066 hasRelatedWork W2959258437 @default.
- W3209307066 hasRelatedWork W2966726156 @default.
- W3209307066 hasRelatedWork W3003652671 @default.