Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209357545> ?p ?o ?g. }
- W3209357545 endingPage "2575" @default.
- W3209357545 startingPage "2575" @default.
- W3209357545 abstract "The world production of chestnuts has significantly grown in recent decades. Consumer attitudes, increasingly turned towards healthy foods, show a greater interest in chestnuts due to their health benefits. Consequently, it is important to develop reliable methods for the selection of high-quality products, both from a qualitative and sensory point of view. In this study, Castanea spp. fruits from Italy, namely Sweet chestnut cultivar and the Marrone cultivar, were evaluated by an official panel, and the responses for sensory attributes were used to verify the correlation to the near-infrared spectra. Data fusion strategies have been applied to take advantage of the synergistic effect of the information obtained from NIR and sensory analysis. Large nuts, easy pellicle removal, chestnut aroma, and aromatic intensity render Marrone cv fruits suitable for both the fresh market and candying, i.e., marron glacé. Whereas, sweet chestnut samples, due to their characteristics, have the potential to be used for secondary food products, such as jam, mash chestnut, and flour. The research lays the foundations for a superior data fusion approach for chestnut identification in terms of classification sensitivity and specificity, in which sensory and spectral approaches compensate each other's drawbacks, synergistically contributing to an excellent result." @default.
- W3209357545 created "2021-11-08" @default.
- W3209357545 creator A5006572654 @default.
- W3209357545 creator A5008504312 @default.
- W3209357545 creator A5009103648 @default.
- W3209357545 creator A5030059616 @default.
- W3209357545 creator A5070107161 @default.
- W3209357545 creator A5072756245 @default.
- W3209357545 date "2021-10-26" @default.
- W3209357545 modified "2023-10-16" @default.
- W3209357545 title "Chestnut Cultivar Identification through the Data Fusion of Sensory Quality and FT-NIR Spectral Data" @default.
- W3209357545 cites W1137874003 @default.
- W3209357545 cites W1604305020 @default.
- W3209357545 cites W1970335548 @default.
- W3209357545 cites W1984423308 @default.
- W3209357545 cites W1997207432 @default.
- W3209357545 cites W1999434274 @default.
- W3209357545 cites W2007838376 @default.
- W3209357545 cites W2008015991 @default.
- W3209357545 cites W2010198557 @default.
- W3209357545 cites W2028071739 @default.
- W3209357545 cites W2031462881 @default.
- W3209357545 cites W2039092681 @default.
- W3209357545 cites W2056436715 @default.
- W3209357545 cites W2062132290 @default.
- W3209357545 cites W2062226253 @default.
- W3209357545 cites W2071325350 @default.
- W3209357545 cites W2074528034 @default.
- W3209357545 cites W2074719566 @default.
- W3209357545 cites W2081182951 @default.
- W3209357545 cites W2086465126 @default.
- W3209357545 cites W209708181 @default.
- W3209357545 cites W2103650100 @default.
- W3209357545 cites W2147850044 @default.
- W3209357545 cites W2410222797 @default.
- W3209357545 cites W2462723057 @default.
- W3209357545 cites W2591438994 @default.
- W3209357545 cites W2600249564 @default.
- W3209357545 cites W2755664188 @default.
- W3209357545 cites W2781597941 @default.
- W3209357545 cites W2784001517 @default.
- W3209357545 cites W2790493093 @default.
- W3209357545 cites W2804732191 @default.
- W3209357545 cites W2897132670 @default.
- W3209357545 cites W2900510723 @default.
- W3209357545 cites W2908491166 @default.
- W3209357545 cites W2932055636 @default.
- W3209357545 cites W2944384524 @default.
- W3209357545 cites W2962387149 @default.
- W3209357545 cites W2963325227 @default.
- W3209357545 cites W2964851261 @default.
- W3209357545 cites W2981368977 @default.
- W3209357545 cites W2983457280 @default.
- W3209357545 cites W2985913423 @default.
- W3209357545 cites W2996967816 @default.
- W3209357545 cites W3006891992 @default.
- W3209357545 cites W3036000200 @default.
- W3209357545 cites W3036189275 @default.
- W3209357545 cites W3046942837 @default.
- W3209357545 cites W3114919357 @default.
- W3209357545 cites W3130631596 @default.
- W3209357545 cites W3133507173 @default.
- W3209357545 cites W3161933232 @default.
- W3209357545 cites W4233899369 @default.
- W3209357545 doi "https://doi.org/10.3390/foods10112575" @default.
- W3209357545 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8618948" @default.
- W3209357545 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34828856" @default.
- W3209357545 hasPublicationYear "2021" @default.
- W3209357545 type Work @default.
- W3209357545 sameAs 3209357545 @default.
- W3209357545 citedByCount "10" @default.
- W3209357545 countsByYear W32093575452022 @default.
- W3209357545 countsByYear W32093575452023 @default.
- W3209357545 crossrefType "journal-article" @default.
- W3209357545 hasAuthorship W3209357545A5006572654 @default.
- W3209357545 hasAuthorship W3209357545A5008504312 @default.
- W3209357545 hasAuthorship W3209357545A5009103648 @default.
- W3209357545 hasAuthorship W3209357545A5030059616 @default.
- W3209357545 hasAuthorship W3209357545A5070107161 @default.
- W3209357545 hasAuthorship W3209357545A5072756245 @default.
- W3209357545 hasBestOaLocation W32093575451 @default.
- W3209357545 hasConcept C116834253 @default.
- W3209357545 hasConcept C144027150 @default.
- W3209357545 hasConcept C169760540 @default.
- W3209357545 hasConcept C197321923 @default.
- W3209357545 hasConcept C24223341 @default.
- W3209357545 hasConcept C2780563676 @default.
- W3209357545 hasConcept C3018122547 @default.
- W3209357545 hasConcept C31903555 @default.
- W3209357545 hasConcept C33923547 @default.
- W3209357545 hasConcept C556039675 @default.
- W3209357545 hasConcept C59822182 @default.
- W3209357545 hasConcept C71924100 @default.
- W3209357545 hasConcept C86803240 @default.
- W3209357545 hasConcept C94487597 @default.
- W3209357545 hasConceptScore W3209357545C116834253 @default.
- W3209357545 hasConceptScore W3209357545C144027150 @default.
- W3209357545 hasConceptScore W3209357545C169760540 @default.