Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209409148> ?p ?o ?g. }
- W3209409148 abstract "Mental health is a critical issue in modern society, and mental disorders could sometimes turn to suicidal ideation without adequate treatment. Early detection of mental disorders and suicidal ideation from social content provides a potential way for effective social intervention. Recent advances in pretrained contextualized language representations have promoted the development of several domain-specific pretrained models and facilitated several downstream applications. However, there are no existing pretrained language models for mental healthcare. This paper trains and release two pretrained masked language models, i.e., MentalBERT and MentalRoBERTa, to benefit machine learning for the mental healthcare research community. Besides, we evaluate our trained domain-specific models and several variants of pretrained language models on several mental disorder detection benchmarks and demonstrate that language representations pretrained in the target domain improve the performance of mental health detection tasks." @default.
- W3209409148 created "2021-11-08" @default.
- W3209409148 creator A5007841686 @default.
- W3209409148 creator A5042345460 @default.
- W3209409148 creator A5046206794 @default.
- W3209409148 creator A5052327236 @default.
- W3209409148 creator A5082046789 @default.
- W3209409148 creator A5082138086 @default.
- W3209409148 date "2021-10-29" @default.
- W3209409148 modified "2023-09-29" @default.
- W3209409148 title "MentalBERT: Publicly Available Pretrained Language Models for Mental Healthcare" @default.
- W3209409148 cites W1522301498 @default.
- W3209409148 cites W2121770572 @default.
- W3209409148 cites W2250301071 @default.
- W3209409148 cites W2252031683 @default.
- W3209409148 cites W2405042511 @default.
- W3209409148 cites W2511501696 @default.
- W3209409148 cites W2582664174 @default.
- W3209409148 cites W2763990719 @default.
- W3209409148 cites W2807452501 @default.
- W3209409148 cites W2890787190 @default.
- W3209409148 cites W2897240328 @default.
- W3209409148 cites W2911489562 @default.
- W3209409148 cites W2912581524 @default.
- W3209409148 cites W2927148761 @default.
- W3209409148 cites W2937845937 @default.
- W3209409148 cites W2952402849 @default.
- W3209409148 cites W2953413710 @default.
- W3209409148 cites W2963341956 @default.
- W3209409148 cites W2963716420 @default.
- W3209409148 cites W2965373594 @default.
- W3209409148 cites W2981984641 @default.
- W3209409148 cites W2987392802 @default.
- W3209409148 cites W3005911073 @default.
- W3209409148 cites W3005929844 @default.
- W3209409148 cites W3034144394 @default.
- W3209409148 cites W3034238904 @default.
- W3209409148 cites W3034674374 @default.
- W3209409148 cites W3046375318 @default.
- W3209409148 cites W3088335873 @default.
- W3209409148 cites W3091936762 @default.
- W3209409148 cites W3095850336 @default.
- W3209409148 cites W3103163889 @default.
- W3209409148 cites W3162081707 @default.
- W3209409148 cites W3169527902 @default.
- W3209409148 cites W3172915759 @default.
- W3209409148 cites W3176528293 @default.
- W3209409148 cites W3177079527 @default.
- W3209409148 cites W3198450613 @default.
- W3209409148 doi "https://doi.org/10.48550/arxiv.2110.15621" @default.
- W3209409148 hasPublicationYear "2021" @default.
- W3209409148 type Work @default.
- W3209409148 sameAs 3209409148 @default.
- W3209409148 citedByCount "2" @default.
- W3209409148 countsByYear W32094091482023 @default.
- W3209409148 crossrefType "posted-content" @default.
- W3209409148 hasAuthorship W3209409148A5007841686 @default.
- W3209409148 hasAuthorship W3209409148A5042345460 @default.
- W3209409148 hasAuthorship W3209409148A5046206794 @default.
- W3209409148 hasAuthorship W3209409148A5052327236 @default.
- W3209409148 hasAuthorship W3209409148A5082046789 @default.
- W3209409148 hasAuthorship W3209409148A5082138086 @default.
- W3209409148 hasBestOaLocation W32094091481 @default.
- W3209409148 hasConcept C118552586 @default.
- W3209409148 hasConcept C134306372 @default.
- W3209409148 hasConcept C134362201 @default.
- W3209409148 hasConcept C137293760 @default.
- W3209409148 hasConcept C15744967 @default.
- W3209409148 hasConcept C204321447 @default.
- W3209409148 hasConcept C2776641880 @default.
- W3209409148 hasConcept C2780665704 @default.
- W3209409148 hasConcept C2992695702 @default.
- W3209409148 hasConcept C3017944768 @default.
- W3209409148 hasConcept C33923547 @default.
- W3209409148 hasConcept C36503486 @default.
- W3209409148 hasConcept C41008148 @default.
- W3209409148 hasConcept C526869908 @default.
- W3209409148 hasConcept C545542383 @default.
- W3209409148 hasConcept C71924100 @default.
- W3209409148 hasConceptScore W3209409148C118552586 @default.
- W3209409148 hasConceptScore W3209409148C134306372 @default.
- W3209409148 hasConceptScore W3209409148C134362201 @default.
- W3209409148 hasConceptScore W3209409148C137293760 @default.
- W3209409148 hasConceptScore W3209409148C15744967 @default.
- W3209409148 hasConceptScore W3209409148C204321447 @default.
- W3209409148 hasConceptScore W3209409148C2776641880 @default.
- W3209409148 hasConceptScore W3209409148C2780665704 @default.
- W3209409148 hasConceptScore W3209409148C2992695702 @default.
- W3209409148 hasConceptScore W3209409148C3017944768 @default.
- W3209409148 hasConceptScore W3209409148C33923547 @default.
- W3209409148 hasConceptScore W3209409148C36503486 @default.
- W3209409148 hasConceptScore W3209409148C41008148 @default.
- W3209409148 hasConceptScore W3209409148C526869908 @default.
- W3209409148 hasConceptScore W3209409148C545542383 @default.
- W3209409148 hasConceptScore W3209409148C71924100 @default.
- W3209409148 hasLocation W32094091481 @default.
- W3209409148 hasOpenAccess W3209409148 @default.
- W3209409148 hasPrimaryLocation W32094091481 @default.
- W3209409148 hasRelatedWork W2138394177 @default.
- W3209409148 hasRelatedWork W2330338213 @default.