Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209432004> ?p ?o ?g. }
- W3209432004 endingPage "102140" @default.
- W3209432004 startingPage "102140" @default.
- W3209432004 abstract "Civil and maritime engineering systems, among others, from bridges to offshore platforms and wind turbines, must be efficiently managed as they are exposed to deterioration mechanisms throughout their operational life, such as fatigue or corrosion. Identifying optimal inspection and maintenance policies demands the solution of a complex sequential decision-making problem under uncertainty, with the main objective of efficiently controlling the risk associated with structural failures. Addressing this complexity, risk-based inspection planning methodologies, supported often by dynamic Bayesian networks, evaluate a set of pre-defined heuristic decision rules to reasonably simplify the decision problem. However, the resulting policies may be compromised by the limited space considered in the definition of the decision rules. Avoiding this limitation, Partially Observable Markov Decision Processes (POMDPs) provide a principled mathematical methodology for stochastic optimal control under uncertain action outcomes and observations, in which the optimal actions are prescribed as a function of the entire, dynamically updated, state probability distribution. In this paper, we combine dynamic Bayesian networks with POMDPs in a joint framework for optimal inspection and maintenance planning, and we provide the formulation for developing both infinite and finite horizon POMDPs in a structural reliability context. The proposed methodology is implemented and tested for the case of a structural component subject to fatigue deterioration, demonstrating the capability of state-of-the-art point-based POMDP solvers for solving the underlying planning optimization problem. Within the numerical experiments, POMDP and heuristic-based policies are thoroughly compared, and results showcase that POMDPs achieve substantially lower costs as compared to their counterparts, even for traditional problem settings." @default.
- W3209432004 created "2021-11-08" @default.
- W3209432004 creator A5004104247 @default.
- W3209432004 creator A5023492586 @default.
- W3209432004 creator A5039241461 @default.
- W3209432004 creator A5059267622 @default.
- W3209432004 creator A5085766592 @default.
- W3209432004 date "2022-01-01" @default.
- W3209432004 modified "2023-09-24" @default.
- W3209432004 title "Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes" @default.
- W3209432004 cites W1203603803 @default.
- W3209432004 cites W1965244755 @default.
- W3209432004 cites W1973387135 @default.
- W3209432004 cites W1988803698 @default.
- W3209432004 cites W1995552576 @default.
- W3209432004 cites W2001835576 @default.
- W3209432004 cites W2001863269 @default.
- W3209432004 cites W2007626154 @default.
- W3209432004 cites W2009146649 @default.
- W3209432004 cites W2026270493 @default.
- W3209432004 cites W2040967746 @default.
- W3209432004 cites W2051090942 @default.
- W3209432004 cites W2055615017 @default.
- W3209432004 cites W2055921164 @default.
- W3209432004 cites W2060476917 @default.
- W3209432004 cites W2077555894 @default.
- W3209432004 cites W2083240327 @default.
- W3209432004 cites W2083987440 @default.
- W3209432004 cites W2099430963 @default.
- W3209432004 cites W2101860222 @default.
- W3209432004 cites W2136616769 @default.
- W3209432004 cites W2163757739 @default.
- W3209432004 cites W2168359464 @default.
- W3209432004 cites W2169778923 @default.
- W3209432004 cites W2307887025 @default.
- W3209432004 cites W2390735409 @default.
- W3209432004 cites W2411296839 @default.
- W3209432004 cites W2416714112 @default.
- W3209432004 cites W2731295606 @default.
- W3209432004 cites W2762715746 @default.
- W3209432004 cites W2792291066 @default.
- W3209432004 cites W2793006972 @default.
- W3209432004 cites W2803535443 @default.
- W3209432004 cites W2889273262 @default.
- W3209432004 cites W2960141888 @default.
- W3209432004 cites W2963426313 @default.
- W3209432004 cites W3042730023 @default.
- W3209432004 cites W3101822862 @default.
- W3209432004 cites W3126922565 @default.
- W3209432004 cites W3196711492 @default.
- W3209432004 doi "https://doi.org/10.1016/j.strusafe.2021.102140" @default.
- W3209432004 hasPublicationYear "2022" @default.
- W3209432004 type Work @default.
- W3209432004 sameAs 3209432004 @default.
- W3209432004 citedByCount "15" @default.
- W3209432004 countsByYear W32094320042019 @default.
- W3209432004 countsByYear W32094320042020 @default.
- W3209432004 countsByYear W32094320042022 @default.
- W3209432004 countsByYear W32094320042023 @default.
- W3209432004 crossrefType "journal-article" @default.
- W3209432004 hasAuthorship W3209432004A5004104247 @default.
- W3209432004 hasAuthorship W3209432004A5023492586 @default.
- W3209432004 hasAuthorship W3209432004A5039241461 @default.
- W3209432004 hasAuthorship W3209432004A5059267622 @default.
- W3209432004 hasAuthorship W3209432004A5085766592 @default.
- W3209432004 hasBestOaLocation W32094320042 @default.
- W3209432004 hasConcept C105795698 @default.
- W3209432004 hasConcept C106189395 @default.
- W3209432004 hasConcept C107673813 @default.
- W3209432004 hasConcept C119857082 @default.
- W3209432004 hasConcept C126255220 @default.
- W3209432004 hasConcept C127413603 @default.
- W3209432004 hasConcept C151730666 @default.
- W3209432004 hasConcept C154945302 @default.
- W3209432004 hasConcept C159886148 @default.
- W3209432004 hasConcept C163836022 @default.
- W3209432004 hasConcept C17098449 @default.
- W3209432004 hasConcept C173801870 @default.
- W3209432004 hasConcept C174988536 @default.
- W3209432004 hasConcept C2779343474 @default.
- W3209432004 hasConcept C28761237 @default.
- W3209432004 hasConcept C33923547 @default.
- W3209432004 hasConcept C41008148 @default.
- W3209432004 hasConcept C42475967 @default.
- W3209432004 hasConcept C82142266 @default.
- W3209432004 hasConcept C86803240 @default.
- W3209432004 hasConcept C98763669 @default.
- W3209432004 hasConceptScore W3209432004C105795698 @default.
- W3209432004 hasConceptScore W3209432004C106189395 @default.
- W3209432004 hasConceptScore W3209432004C107673813 @default.
- W3209432004 hasConceptScore W3209432004C119857082 @default.
- W3209432004 hasConceptScore W3209432004C126255220 @default.
- W3209432004 hasConceptScore W3209432004C127413603 @default.
- W3209432004 hasConceptScore W3209432004C151730666 @default.
- W3209432004 hasConceptScore W3209432004C154945302 @default.
- W3209432004 hasConceptScore W3209432004C159886148 @default.
- W3209432004 hasConceptScore W3209432004C163836022 @default.
- W3209432004 hasConceptScore W3209432004C17098449 @default.