Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209490888> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3209490888 endingPage "148770" @default.
- W3209490888 startingPage "148756" @default.
- W3209490888 abstract "In this paper, a novel fully-automated state-based decoding method has been proposed for continuous decoding problems in brain-machine interface (BMI) systems, called Gaussian mixture of model (GMM)-assisted PLS (GMMPLS). In contrast to other state-based and hierarchical decoders, the proposed method does not demand any prior information about the desired output structure. Instead, GMMPLS uses the GMM algorithm to divide the desired output into a specific number of states (clusters). Next, a logistic regression model is trained to predict the probability membership of each time sample for each state. Finally, using the concept of the partial least square (PLS) algorithm, GMMPLS constructs a model for decoding the desired output using the input data and the achieved membership probabilities. The performance of the GMMPLS has been evaluated and compared to PLS, the nonlinear quadratic PLS (QPLS), and the bayesian PLS (BPLS) methods through a simulated dataset and two different real-world BMI datasets. The achieved results demonstrated that the GMMPLS significantly outperformed PLS, QPLS, and BPLS overall datasets." @default.
- W3209490888 created "2021-11-08" @default.
- W3209490888 creator A5006463020 @default.
- W3209490888 creator A5074821420 @default.
- W3209490888 creator A5086383664 @default.
- W3209490888 date "2021-01-01" @default.
- W3209490888 modified "2023-10-09" @default.
- W3209490888 title "GMMPLS: A Novel Automatic State-Based Algorithm for Continuous Decoding in BMIs" @default.
- W3209490888 cites W1965747377 @default.
- W3209490888 cites W1969999266 @default.
- W3209490888 cites W1975842137 @default.
- W3209490888 cites W1980271329 @default.
- W3209490888 cites W1985741088 @default.
- W3209490888 cites W1997356788 @default.
- W3209490888 cites W2012799355 @default.
- W3209490888 cites W2016848152 @default.
- W3209490888 cites W2044333412 @default.
- W3209490888 cites W2095211414 @default.
- W3209490888 cites W2158863190 @default.
- W3209490888 cites W2160333357 @default.
- W3209490888 cites W2166446427 @default.
- W3209490888 cites W2302360738 @default.
- W3209490888 cites W2408484014 @default.
- W3209490888 cites W2508267589 @default.
- W3209490888 cites W2538697726 @default.
- W3209490888 cites W2559016953 @default.
- W3209490888 cites W2753118054 @default.
- W3209490888 cites W2754342746 @default.
- W3209490888 cites W2896381947 @default.
- W3209490888 cites W2939528460 @default.
- W3209490888 cites W2950522612 @default.
- W3209490888 cites W2987448886 @default.
- W3209490888 cites W2996779512 @default.
- W3209490888 cites W2997964694 @default.
- W3209490888 cites W3008936298 @default.
- W3209490888 cites W3010506751 @default.
- W3209490888 cites W3013091470 @default.
- W3209490888 cites W3014018632 @default.
- W3209490888 cites W3043370500 @default.
- W3209490888 cites W3081381015 @default.
- W3209490888 cites W3082143837 @default.
- W3209490888 cites W3100541926 @default.
- W3209490888 cites W3123378585 @default.
- W3209490888 cites W3123600130 @default.
- W3209490888 cites W3126124476 @default.
- W3209490888 cites W3155865092 @default.
- W3209490888 cites W3162072062 @default.
- W3209490888 cites W3203239940 @default.
- W3209490888 cites W4237894557 @default.
- W3209490888 doi "https://doi.org/10.1109/access.2021.3123098" @default.
- W3209490888 hasPublicationYear "2021" @default.
- W3209490888 type Work @default.
- W3209490888 sameAs 3209490888 @default.
- W3209490888 citedByCount "1" @default.
- W3209490888 countsByYear W32094908882023 @default.
- W3209490888 crossrefType "journal-article" @default.
- W3209490888 hasAuthorship W3209490888A5006463020 @default.
- W3209490888 hasAuthorship W3209490888A5074821420 @default.
- W3209490888 hasAuthorship W3209490888A5086383664 @default.
- W3209490888 hasBestOaLocation W32094908881 @default.
- W3209490888 hasConcept C11413529 @default.
- W3209490888 hasConcept C41008148 @default.
- W3209490888 hasConcept C48103436 @default.
- W3209490888 hasConcept C57273362 @default.
- W3209490888 hasConceptScore W3209490888C11413529 @default.
- W3209490888 hasConceptScore W3209490888C41008148 @default.
- W3209490888 hasConceptScore W3209490888C48103436 @default.
- W3209490888 hasConceptScore W3209490888C57273362 @default.
- W3209490888 hasLocation W32094908881 @default.
- W3209490888 hasLocation W32094908882 @default.
- W3209490888 hasOpenAccess W3209490888 @default.
- W3209490888 hasPrimaryLocation W32094908881 @default.
- W3209490888 hasRelatedWork W2030492936 @default.
- W3209490888 hasRelatedWork W2351361564 @default.
- W3209490888 hasRelatedWork W2351992004 @default.
- W3209490888 hasRelatedWork W2352632909 @default.
- W3209490888 hasRelatedWork W2358034992 @default.
- W3209490888 hasRelatedWork W2372547243 @default.
- W3209490888 hasRelatedWork W2372785870 @default.
- W3209490888 hasRelatedWork W2379307495 @default.
- W3209490888 hasRelatedWork W2380207131 @default.
- W3209490888 hasRelatedWork W2383319832 @default.
- W3209490888 hasVolume "9" @default.
- W3209490888 isParatext "false" @default.
- W3209490888 isRetracted "false" @default.
- W3209490888 magId "3209490888" @default.
- W3209490888 workType "article" @default.