Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209503739> ?p ?o ?g. }
- W3209503739 endingPage "103914" @default.
- W3209503739 startingPage "103914" @default.
- W3209503739 abstract "Surfactant-enhanced aquifer remediation (SEAR) is an appropriate method for DNAPL-contaminated aquifer remediation; However, due to the high cost of the SEAR method, finding the optimal remediation scenario is usually essential. Embedding numerical simulation models of DNAPL remediation within the optimization routines are computationally expensive, and in this situation, using surrogate models instead of numerical models is a proper alternative. Ensemble methods are also utilized to enhance the accuracy of surrogate models, and in this study, the Stacking ensemble method was applied and compared with conventional methods. First, Six machine learning methods were used as surrogate models, and various feature scaling techniques were employed, and their impact on the models' performance was evaluated. Also, Bagging and Boosting homogeneous ensemble methods were used to improve the base models' accuracy. A total of six stand-alone surrogate models and 12 homogeneous ensemble models were used as the base input models of the Stacking ensemble model. Due to the large size of the Stacking model, Bayesian hyper-parameter optimization method was used to find its optimal hyper-parameters. The results showed that the Bayesian hyper-parameter optimization method had better performance than common methods such as random search and grid search. The artificial neural network model, whose input data was scaled by the power transformer method, had the best performance with a cross-validation RMSE of 0.065. The Boosting method increased the base models' accuracy more than other homogeneous methods, and the best Boosting model had a test RMSE of 0.039. The Stacking ensemble method significantly increased the base models' accuracy and performed better than other ensemble methods. The best ensemble surrogate model constructed with Stacking had a cross-validation RMSE of 0.016. Finally, a differential evolution optimization model was used by substituting the Stacking ensemble model with the numerical model, and the optimal remediation strategy was obtained at a total cost of $ 72,706." @default.
- W3209503739 created "2021-11-08" @default.
- W3209503739 creator A5022625594 @default.
- W3209503739 creator A5031150887 @default.
- W3209503739 creator A5052882249 @default.
- W3209503739 date "2021-12-01" @default.
- W3209503739 modified "2023-10-05" @default.
- W3209503739 title "Optimized stacking, a new method for constructing ensemble surrogate models applied to DNAPL-contaminated aquifer remediation" @default.
- W3209503739 cites W1410979002 @default.
- W3209503739 cites W1510052597 @default.
- W3209503739 cites W1584846110 @default.
- W3209503739 cites W1588100052 @default.
- W3209503739 cites W1964357740 @default.
- W3209503739 cites W1968682812 @default.
- W3209503739 cites W1976482237 @default.
- W3209503739 cites W1981909972 @default.
- W3209503739 cites W1987423233 @default.
- W3209503739 cites W1988790447 @default.
- W3209503739 cites W1996193273 @default.
- W3209503739 cites W2001620004 @default.
- W3209503739 cites W2002107298 @default.
- W3209503739 cites W2012295213 @default.
- W3209503739 cites W2022229842 @default.
- W3209503739 cites W2026023489 @default.
- W3209503739 cites W2045442620 @default.
- W3209503739 cites W2046227236 @default.
- W3209503739 cites W2051449222 @default.
- W3209503739 cites W2057718973 @default.
- W3209503739 cites W2060305711 @default.
- W3209503739 cites W2065893901 @default.
- W3209503739 cites W2069129958 @default.
- W3209503739 cites W2079166250 @default.
- W3209503739 cites W2082137964 @default.
- W3209503739 cites W2083450550 @default.
- W3209503739 cites W2084388523 @default.
- W3209503739 cites W2088990166 @default.
- W3209503739 cites W2098720801 @default.
- W3209503739 cites W2105782540 @default.
- W3209503739 cites W2112020727 @default.
- W3209503739 cites W2139145565 @default.
- W3209503739 cites W2145475762 @default.
- W3209503739 cites W2183579466 @default.
- W3209503739 cites W2192203593 @default.
- W3209503739 cites W2240491010 @default.
- W3209503739 cites W2295426952 @default.
- W3209503739 cites W2423924849 @default.
- W3209503739 cites W2480416552 @default.
- W3209503739 cites W2600592005 @default.
- W3209503739 cites W2621058457 @default.
- W3209503739 cites W2626167231 @default.
- W3209503739 cites W2669210504 @default.
- W3209503739 cites W2766555313 @default.
- W3209503739 cites W2767678610 @default.
- W3209503739 cites W2768021164 @default.
- W3209503739 cites W2784191455 @default.
- W3209503739 cites W28412257 @default.
- W3209503739 cites W2887500282 @default.
- W3209503739 cites W2915613469 @default.
- W3209503739 cites W2921298498 @default.
- W3209503739 cites W2948313166 @default.
- W3209503739 cites W2955641192 @default.
- W3209503739 cites W3200201552 @default.
- W3209503739 cites W4212883601 @default.
- W3209503739 cites W4236993164 @default.
- W3209503739 doi "https://doi.org/10.1016/j.jconhyd.2021.103914" @default.
- W3209503739 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34798506" @default.
- W3209503739 hasPublicationYear "2021" @default.
- W3209503739 type Work @default.
- W3209503739 sameAs 3209503739 @default.
- W3209503739 citedByCount "5" @default.
- W3209503739 countsByYear W32095037392022 @default.
- W3209503739 countsByYear W32095037392023 @default.
- W3209503739 crossrefType "journal-article" @default.
- W3209503739 hasAuthorship W3209503739A5022625594 @default.
- W3209503739 hasAuthorship W3209503739A5031150887 @default.
- W3209503739 hasAuthorship W3209503739A5052882249 @default.
- W3209503739 hasConcept C112570922 @default.
- W3209503739 hasConcept C119857082 @default.
- W3209503739 hasConcept C119898033 @default.
- W3209503739 hasConcept C121332964 @default.
- W3209503739 hasConcept C126255220 @default.
- W3209503739 hasConcept C131675550 @default.
- W3209503739 hasConcept C18903297 @default.
- W3209503739 hasConcept C33347731 @default.
- W3209503739 hasConcept C33923547 @default.
- W3209503739 hasConcept C37992848 @default.
- W3209503739 hasConcept C41008148 @default.
- W3209503739 hasConcept C46141821 @default.
- W3209503739 hasConcept C46686674 @default.
- W3209503739 hasConcept C522964758 @default.
- W3209503739 hasConcept C86803240 @default.
- W3209503739 hasConceptScore W3209503739C112570922 @default.
- W3209503739 hasConceptScore W3209503739C119857082 @default.
- W3209503739 hasConceptScore W3209503739C119898033 @default.
- W3209503739 hasConceptScore W3209503739C121332964 @default.
- W3209503739 hasConceptScore W3209503739C126255220 @default.
- W3209503739 hasConceptScore W3209503739C131675550 @default.
- W3209503739 hasConceptScore W3209503739C18903297 @default.