Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209504993> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3209504993 abstract "This dissertation investigates the application of machine learning to improve decision making in airline operations. In an introductory overview, we1 discuss the airline industry and the challenges of decision making in airline operations: e. g., complex IT infrastructure, interconnected resources, delay management, fuel price volatility and future environmental regulation. Machine learning can efficiently integrate a large volume of data from a variety of data sources and formats to generate accurate predictions. To assess the viability of using machine learning models for decision making in airline operations, we develop a model based on linear regression and gradient boosting to predict aircraft arrival time. Furthermore, we integrate cost index optimization to model the impact of aircraft speed on arrival time. While we find that machine learning can improve prediction accuracy by more than 30 %, the optimal cost index varies according to fuel cost, flight distance and delay costs. We propose an overall reduction in cost index for short-haul flights to reduce fuel cost while maintaining punctual operations. Arrival time predictions serve as input for daily operations planning and control. For network carriers accurate arrival time predictions are key for efficient hub operations. In a next step, we focus on aircraft arrival time prediction for intercontinental flights. We analyze the accuracy of en-route weather data provided by the flight plan, generate features based on en-route weather data and integrate them in our prediction model. We evaluate three machine learning models: linear regression, random forest and gradient boosting. Through our approach, we can assess the impact of en-route weather data. Overall, an increase in prediction accuracy of 25 % is achieved. By including en-route weather data, prediction accuracy is improved by 5 %. Our model outlines the essential features for intercontinental arrival time predictions and assess the value of en-route weather data. Furthermore, we outline organizational challenges in implementing predictive analytics. Future environmental regulations are a challenge for the airline industry. From 2020 onwards net growth in CO2 emissions is prohibited. Thus, airlines need to focus on initiatives to limit fuel consumption. We develop a prediction model for fuel consumption considering ten different aircraft types. Our results show that fuel consumption can be improved by more than 30 % for short and long-haul flights resulting in an annual reduction of 10.5 million e in fuel costs and a reduction on green house gas emissions of 66.000 tons. Furthermore, we assess the pilots’ willingness to integrate our prediction model in their fuel decision. Our analysis shows that high prediction accuracy, model understanding and a long testing phase are essential for acceptance of the prediction model. The main implication is that decision making in airline operations can be substantially improved through machine learning. Therefore, more prediction.1The term “we” refers to the authors of the respective chapters as denoted at the beginning of each chapter. For the abstract, this refers to the authors of Achenbach and Spinler (2018a,b), Achenbach et al. (2017)." @default.
- W3209504993 created "2021-11-08" @default.
- W3209504993 creator A5004854015 @default.
- W3209504993 date "2018-01-01" @default.
- W3209504993 modified "2023-09-27" @default.
- W3209504993 title "Predictive analytics in airline operations : application of machine learning for arrival time and fuel consumption prediction" @default.
- W3209504993 hasPublicationYear "2018" @default.
- W3209504993 type Work @default.
- W3209504993 sameAs 3209504993 @default.
- W3209504993 citedByCount "0" @default.
- W3209504993 crossrefType "journal-article" @default.
- W3209504993 hasAuthorship W3209504993A5004854015 @default.
- W3209504993 hasConcept C119857082 @default.
- W3209504993 hasConcept C127413603 @default.
- W3209504993 hasConcept C146978453 @default.
- W3209504993 hasConcept C154945302 @default.
- W3209504993 hasConcept C169258074 @default.
- W3209504993 hasConcept C206729178 @default.
- W3209504993 hasConcept C21547014 @default.
- W3209504993 hasConcept C2780211030 @default.
- W3209504993 hasConcept C41008148 @default.
- W3209504993 hasConcept C42475967 @default.
- W3209504993 hasConcept C45804977 @default.
- W3209504993 hasConcept C45882903 @default.
- W3209504993 hasConcept C70153297 @default.
- W3209504993 hasConcept C79403827 @default.
- W3209504993 hasConceptScore W3209504993C119857082 @default.
- W3209504993 hasConceptScore W3209504993C127413603 @default.
- W3209504993 hasConceptScore W3209504993C146978453 @default.
- W3209504993 hasConceptScore W3209504993C154945302 @default.
- W3209504993 hasConceptScore W3209504993C169258074 @default.
- W3209504993 hasConceptScore W3209504993C206729178 @default.
- W3209504993 hasConceptScore W3209504993C21547014 @default.
- W3209504993 hasConceptScore W3209504993C2780211030 @default.
- W3209504993 hasConceptScore W3209504993C41008148 @default.
- W3209504993 hasConceptScore W3209504993C42475967 @default.
- W3209504993 hasConceptScore W3209504993C45804977 @default.
- W3209504993 hasConceptScore W3209504993C45882903 @default.
- W3209504993 hasConceptScore W3209504993C70153297 @default.
- W3209504993 hasConceptScore W3209504993C79403827 @default.
- W3209504993 hasLocation W32095049931 @default.
- W3209504993 hasOpenAccess W3209504993 @default.
- W3209504993 hasPrimaryLocation W32095049931 @default.
- W3209504993 hasRelatedWork W1509502696 @default.
- W3209504993 hasRelatedWork W1813774107 @default.
- W3209504993 hasRelatedWork W1972406693 @default.
- W3209504993 hasRelatedWork W2047691663 @default.
- W3209504993 hasRelatedWork W2050951677 @default.
- W3209504993 hasRelatedWork W2091606939 @default.
- W3209504993 hasRelatedWork W2106818808 @default.
- W3209504993 hasRelatedWork W2199470174 @default.
- W3209504993 hasRelatedWork W220739873 @default.
- W3209504993 hasRelatedWork W2514100103 @default.
- W3209504993 hasRelatedWork W2586376039 @default.
- W3209504993 hasRelatedWork W2604439726 @default.
- W3209504993 hasRelatedWork W2606087685 @default.
- W3209504993 hasRelatedWork W2752585556 @default.
- W3209504993 hasRelatedWork W2773985410 @default.
- W3209504993 hasRelatedWork W2916369009 @default.
- W3209504993 hasRelatedWork W298937102 @default.
- W3209504993 hasRelatedWork W328678009 @default.
- W3209504993 hasRelatedWork W4382455 @default.
- W3209504993 hasRelatedWork W2097583290 @default.
- W3209504993 isParatext "false" @default.
- W3209504993 isRetracted "false" @default.
- W3209504993 magId "3209504993" @default.
- W3209504993 workType "article" @default.