Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209506288> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3209506288 abstract "The large-scale industrialization with the development of new technologies has exploited fossil fuel tremendously thereby becoming a threat to the energy sources in the future. The alternate energy resources are required so that desired amount of energy can be derived from them and stored when required. The high energy storage device including dielectric materials-based capacitors can play a crucial role in the fulfillment of the ever-increasing energy demand. The dielectric materials became an integral part of today’s electronics such as digital communication, electric hybrid vehicle, and portable electronic engineering, liquid crystal displays, dielectric resonator oscillator, etc. As gate dielectrics, transistor isolation structures, memory components, inter-level dielectrics, and charge storage in fast capacitors for power isolation, dielectrics play critical roles in integrated circuits. The performance requirements for these dielectrics are increasing considerably as the feature sizes of integrated circuits continue to shrink and speed rises. Even at package level power isolation capacitors, performance improvements are becoming increasingly challenging, necessitating the use of novel materials. As the industry approaches the nm generation, the problems for dielectric materials will become much more severe. Nanotechnology has the potential to offer novel nanostructured materials to meet these needs and therefore different types of metal oxide nanostructures and their nanocomposites have been employed for the dielectric properties and variation of different parameters. The effect of different parameters such as particle size, temperatures, morphology, and oxygen vacancies on the dielectric properties of polymers, metal oxide nanostructures, graphene-based materials, and nanocomposites has been studied. But the effect of different structural phases and morphologies on the dielectric properties of tunable transition metal oxide nanostructures is not so much explored. Various phases and morphologies have different atomic arrangements and shape structures. The transport of charge carriers is largely affected by these parameters on the field frequency. Therefore these parameters have to be explored for the transition metal oxide nanostructures.Therefore, as-synthesized tungsten oxide (with two different orthorhombic WO3.H2O and monoclinic WO3 phases), molybdenum oxide nanostructures (with three different phases such as hexagonal MoO3, orthorhombic MoO3, and mixed hexagonal-orthorhombic MoO3), and their nanocomposites with different phase combinations were employed for the dielectric and ac conductivity analysis using impedance spectroscopy technique at room temperature. Various dielectric parameters such as dielectric constant, dielectric loss, loss tangent, complex impedance, and dielectric modulus have been estimated. It has been observed that the two phases affected the nanocomposites differently. Although the dielectric property of base materials MoO3 was improved in nanocomposites using both phases, monoclinic WO3 showed a synergistic effect and dielectric parameters such as dielectric constant shows higher values than both individual counterparts. The complex impedance analysis showed the effect of grain as well as grain boundary by showing the two semicircles using Nyquist plot analysis. Similarly, electrical conductivity analysis shows that ac conductivity was improved in nanocomposites but a large difference was observed in monoclinic-based nanocomposites. The conductivity was increased with applied field frequency from 20 Hz to1 MHz and obeys the universal Jonscher power law. The conductivity of the nanocomposites at a higher frequency and room temperature shows the order of 10-4 which can further be improved with increasing temperature. Because of the vast variety of structural phases, morphology and good chemistry of tungsten and molybdenum atom can further be explored for energy storage devices." @default.
- W3209506288 created "2021-11-08" @default.
- W3209506288 creator A5030381845 @default.
- W3209506288 creator A5051568628 @default.
- W3209506288 date "2021-10-09" @default.
- W3209506288 modified "2023-09-26" @default.
- W3209506288 title "Investigating dielectric parameters of WO3/MoO3 nanocomposites with different structural phases of WO3 and MoO3 nanostructures" @default.
- W3209506288 hasPublicationYear "2021" @default.
- W3209506288 type Work @default.
- W3209506288 sameAs 3209506288 @default.
- W3209506288 citedByCount "0" @default.
- W3209506288 crossrefType "journal-article" @default.
- W3209506288 hasAuthorship W3209506288A5030381845 @default.
- W3209506288 hasAuthorship W3209506288A5051568628 @default.
- W3209506288 hasConcept C119599485 @default.
- W3209506288 hasConcept C121332964 @default.
- W3209506288 hasConcept C127413603 @default.
- W3209506288 hasConcept C133386390 @default.
- W3209506288 hasConcept C134146338 @default.
- W3209506288 hasConcept C138331895 @default.
- W3209506288 hasConcept C163258240 @default.
- W3209506288 hasConcept C165801399 @default.
- W3209506288 hasConcept C171250308 @default.
- W3209506288 hasConcept C192562407 @default.
- W3209506288 hasConcept C49040817 @default.
- W3209506288 hasConcept C52192207 @default.
- W3209506288 hasConcept C61696701 @default.
- W3209506288 hasConcept C62520636 @default.
- W3209506288 hasConcept C73916439 @default.
- W3209506288 hasConcept C92880739 @default.
- W3209506288 hasConceptScore W3209506288C119599485 @default.
- W3209506288 hasConceptScore W3209506288C121332964 @default.
- W3209506288 hasConceptScore W3209506288C127413603 @default.
- W3209506288 hasConceptScore W3209506288C133386390 @default.
- W3209506288 hasConceptScore W3209506288C134146338 @default.
- W3209506288 hasConceptScore W3209506288C138331895 @default.
- W3209506288 hasConceptScore W3209506288C163258240 @default.
- W3209506288 hasConceptScore W3209506288C165801399 @default.
- W3209506288 hasConceptScore W3209506288C171250308 @default.
- W3209506288 hasConceptScore W3209506288C192562407 @default.
- W3209506288 hasConceptScore W3209506288C49040817 @default.
- W3209506288 hasConceptScore W3209506288C52192207 @default.
- W3209506288 hasConceptScore W3209506288C61696701 @default.
- W3209506288 hasConceptScore W3209506288C62520636 @default.
- W3209506288 hasConceptScore W3209506288C73916439 @default.
- W3209506288 hasConceptScore W3209506288C92880739 @default.
- W3209506288 hasIssue "01" @default.
- W3209506288 hasLocation W32095062881 @default.
- W3209506288 hasOpenAccess W3209506288 @default.
- W3209506288 hasPrimaryLocation W32095062881 @default.
- W3209506288 hasRelatedWork W1963796861 @default.
- W3209506288 hasRelatedWork W2006788141 @default.
- W3209506288 hasRelatedWork W2101084593 @default.
- W3209506288 hasRelatedWork W2754324427 @default.
- W3209506288 hasRelatedWork W2800257963 @default.
- W3209506288 hasRelatedWork W2801618024 @default.
- W3209506288 hasRelatedWork W2809900565 @default.
- W3209506288 hasRelatedWork W2872700082 @default.
- W3209506288 hasRelatedWork W2898384921 @default.
- W3209506288 hasRelatedWork W3035932020 @default.
- W3209506288 hasRelatedWork W3098545360 @default.
- W3209506288 hasRelatedWork W3118609662 @default.
- W3209506288 hasRelatedWork W3121118707 @default.
- W3209506288 hasRelatedWork W3124607215 @default.
- W3209506288 hasRelatedWork W3133971830 @default.
- W3209506288 hasRelatedWork W3138707807 @default.
- W3209506288 hasRelatedWork W3149933734 @default.
- W3209506288 hasRelatedWork W3201391103 @default.
- W3209506288 hasRelatedWork W2340272438 @default.
- W3209506288 hasRelatedWork W2923845543 @default.
- W3209506288 hasVolume "1" @default.
- W3209506288 isParatext "false" @default.
- W3209506288 isRetracted "false" @default.
- W3209506288 magId "3209506288" @default.
- W3209506288 workType "article" @default.