Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209568319> ?p ?o ?g. }
- W3209568319 endingPage "139" @default.
- W3209568319 startingPage "125" @default.
- W3209568319 abstract "To control wave propagation in phononic crystals (PnCs), it is crucial to perform the inverse design of dispersion engineering. In this article, a robust deep-learning method of dispersion engineering in two-dimensional (2D) PnCs is developed by combining deep neural networks (DNNs) with the genetic algorithm (GA), which can be easily extended to reach any target in the trained DNNs’ calculation domain. A high-precision and robust DNN model to predict the bounds of energy bands of 2D PnCs is proposed, forming the forward prediction process. This DNN model shows high efficiency in the testing structures while keeping the mean relative error near 0.1%. The inverse design of PnCs is implemented by DNNs combined with the GA, building the back–forward retrieval process, which can exactly produce the desired PnCs with the expected bandgap bounds in only a few seconds. The proposed framework is promising for constructing arbitrary PnCs on demand." @default.
- W3209568319 created "2021-11-08" @default.
- W3209568319 creator A5011643959 @default.
- W3209568319 creator A5028026494 @default.
- W3209568319 creator A5074904236 @default.
- W3209568319 date "2021-10-27" @default.
- W3209568319 modified "2023-10-16" @default.
- W3209568319 title "Deep learning of dispersion engineering in two-dimensional phononic crystals" @default.
- W3209568319 cites W1494192115 @default.
- W3209568319 cites W1977038370 @default.
- W3209568319 cites W1988115241 @default.
- W3209568319 cites W1994353586 @default.
- W3209568319 cites W1995341919 @default.
- W3209568319 cites W2002311425 @default.
- W3209568319 cites W2006626479 @default.
- W3209568319 cites W2026078581 @default.
- W3209568319 cites W2026131661 @default.
- W3209568319 cites W2028575373 @default.
- W3209568319 cites W2031035514 @default.
- W3209568319 cites W2040650670 @default.
- W3209568319 cites W2042406072 @default.
- W3209568319 cites W2061440420 @default.
- W3209568319 cites W2076063813 @default.
- W3209568319 cites W2083503984 @default.
- W3209568319 cites W2088676195 @default.
- W3209568319 cites W2103496339 @default.
- W3209568319 cites W2104893957 @default.
- W3209568319 cites W2135293965 @default.
- W3209568319 cites W2155582963 @default.
- W3209568319 cites W2554952037 @default.
- W3209568319 cites W2743528146 @default.
- W3209568319 cites W2770326163 @default.
- W3209568319 cites W2772495318 @default.
- W3209568319 cites W2781797083 @default.
- W3209568319 cites W2884853356 @default.
- W3209568319 cites W2908554505 @default.
- W3209568319 cites W2909267274 @default.
- W3209568319 cites W2914274640 @default.
- W3209568319 cites W2917918058 @default.
- W3209568319 cites W2935339072 @default.
- W3209568319 cites W2962832009 @default.
- W3209568319 cites W2979049808 @default.
- W3209568319 cites W2991322414 @default.
- W3209568319 cites W3008234885 @default.
- W3209568319 cites W3086583482 @default.
- W3209568319 cites W4205947740 @default.
- W3209568319 cites W4240805545 @default.
- W3209568319 doi "https://doi.org/10.1080/0305215x.2021.1988587" @default.
- W3209568319 hasPublicationYear "2021" @default.
- W3209568319 type Work @default.
- W3209568319 sameAs 3209568319 @default.
- W3209568319 citedByCount "9" @default.
- W3209568319 countsByYear W32095683192022 @default.
- W3209568319 countsByYear W32095683192023 @default.
- W3209568319 crossrefType "journal-article" @default.
- W3209568319 hasAuthorship W3209568319A5011643959 @default.
- W3209568319 hasAuthorship W3209568319A5028026494 @default.
- W3209568319 hasAuthorship W3209568319A5074904236 @default.
- W3209568319 hasBestOaLocation W32095683192 @default.
- W3209568319 hasConcept C111919701 @default.
- W3209568319 hasConcept C11413529 @default.
- W3209568319 hasConcept C119857082 @default.
- W3209568319 hasConcept C120665830 @default.
- W3209568319 hasConcept C121332964 @default.
- W3209568319 hasConcept C127413603 @default.
- W3209568319 hasConcept C134306372 @default.
- W3209568319 hasConcept C135252773 @default.
- W3209568319 hasConcept C154945302 @default.
- W3209568319 hasConcept C177562468 @default.
- W3209568319 hasConcept C207467116 @default.
- W3209568319 hasConcept C2524010 @default.
- W3209568319 hasConcept C2984842247 @default.
- W3209568319 hasConcept C33923547 @default.
- W3209568319 hasConcept C34972735 @default.
- W3209568319 hasConcept C41008148 @default.
- W3209568319 hasConcept C50644808 @default.
- W3209568319 hasConcept C78519656 @default.
- W3209568319 hasConcept C8880873 @default.
- W3209568319 hasConcept C98045186 @default.
- W3209568319 hasConceptScore W3209568319C111919701 @default.
- W3209568319 hasConceptScore W3209568319C11413529 @default.
- W3209568319 hasConceptScore W3209568319C119857082 @default.
- W3209568319 hasConceptScore W3209568319C120665830 @default.
- W3209568319 hasConceptScore W3209568319C121332964 @default.
- W3209568319 hasConceptScore W3209568319C127413603 @default.
- W3209568319 hasConceptScore W3209568319C134306372 @default.
- W3209568319 hasConceptScore W3209568319C135252773 @default.
- W3209568319 hasConceptScore W3209568319C154945302 @default.
- W3209568319 hasConceptScore W3209568319C177562468 @default.
- W3209568319 hasConceptScore W3209568319C207467116 @default.
- W3209568319 hasConceptScore W3209568319C2524010 @default.
- W3209568319 hasConceptScore W3209568319C2984842247 @default.
- W3209568319 hasConceptScore W3209568319C33923547 @default.
- W3209568319 hasConceptScore W3209568319C34972735 @default.
- W3209568319 hasConceptScore W3209568319C41008148 @default.
- W3209568319 hasConceptScore W3209568319C50644808 @default.
- W3209568319 hasConceptScore W3209568319C78519656 @default.
- W3209568319 hasConceptScore W3209568319C8880873 @default.