Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209591983> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3209591983 abstract "In the fast-changing Internet era, the advantages of e-commerce over traditional shopping models are becoming more and more obvious, and convenient and fast online shopping patterns are attracting more and more users. At the same time, large-scale transactions and demand between e-commerce competition is becoming increasingly fierce, inter-enterprise competition on the one hand to promote the development of e-commerce, at the same time, but also accelerate the survival of e-commerce. Enterprise competition has intensified, customers to the enterprise, has become the most important resource, how to attract customers and retain customers has become the focus of the enterprise, which also makes customer loss become the concern of many enterprises. E-commerce companies in order to ensure their own healthy development in the fierce competition market, not only to make their products attractive, but also in-depth understanding of user preferences and satisfaction, the user’s behavior characteristics of in-depth exploration. E-commerce user behavior instability is greater, the churn rate is high, then, can we find customers in time before the loss, while helping the marketing department to target the loss of customer base and develop appropriate marketing programs is an important work of the enterprise marketing department.It is an important work in the daily operation and management of e-commerce enterprises to predict the loss of users more accurately, to implement targeted retention strategies for users who are at greater risk of loss, and to reduce the churn rate. In these areas, data mining can help businesses. In this paper, data mining technology is applied to business analysis to predict the loss of Tmall users within a certain period of time, so as to implement retention strategy and reduce the churn rate." @default.
- W3209591983 created "2021-11-08" @default.
- W3209591983 creator A5054162077 @default.
- W3209591983 date "2021-06-01" @default.
- W3209591983 modified "2023-10-18" @default.
- W3209591983 title "Predictive analysis of the loss of online shopping users based on data mining" @default.
- W3209591983 doi "https://doi.org/10.1109/iccea53728.2021.00029" @default.
- W3209591983 hasPublicationYear "2021" @default.
- W3209591983 type Work @default.
- W3209591983 sameAs 3209591983 @default.
- W3209591983 citedByCount "0" @default.
- W3209591983 crossrefType "proceedings-article" @default.
- W3209591983 hasAuthorship W3209591983A5054162077 @default.
- W3209591983 hasConcept C101276457 @default.
- W3209591983 hasConcept C10138342 @default.
- W3209591983 hasConcept C110875604 @default.
- W3209591983 hasConcept C127413603 @default.
- W3209591983 hasConcept C136764020 @default.
- W3209591983 hasConcept C140781008 @default.
- W3209591983 hasConcept C144133560 @default.
- W3209591983 hasConcept C162853370 @default.
- W3209591983 hasConcept C182306322 @default.
- W3209591983 hasConcept C18762648 @default.
- W3209591983 hasConcept C18903297 @default.
- W3209591983 hasConcept C206345919 @default.
- W3209591983 hasConcept C2777276756 @default.
- W3209591983 hasConcept C2780378061 @default.
- W3209591983 hasConcept C31258907 @default.
- W3209591983 hasConcept C41008148 @default.
- W3209591983 hasConcept C78519656 @default.
- W3209591983 hasConcept C78597825 @default.
- W3209591983 hasConcept C86803240 @default.
- W3209591983 hasConcept C91306197 @default.
- W3209591983 hasConceptScore W3209591983C101276457 @default.
- W3209591983 hasConceptScore W3209591983C10138342 @default.
- W3209591983 hasConceptScore W3209591983C110875604 @default.
- W3209591983 hasConceptScore W3209591983C127413603 @default.
- W3209591983 hasConceptScore W3209591983C136764020 @default.
- W3209591983 hasConceptScore W3209591983C140781008 @default.
- W3209591983 hasConceptScore W3209591983C144133560 @default.
- W3209591983 hasConceptScore W3209591983C162853370 @default.
- W3209591983 hasConceptScore W3209591983C182306322 @default.
- W3209591983 hasConceptScore W3209591983C18762648 @default.
- W3209591983 hasConceptScore W3209591983C18903297 @default.
- W3209591983 hasConceptScore W3209591983C206345919 @default.
- W3209591983 hasConceptScore W3209591983C2777276756 @default.
- W3209591983 hasConceptScore W3209591983C2780378061 @default.
- W3209591983 hasConceptScore W3209591983C31258907 @default.
- W3209591983 hasConceptScore W3209591983C41008148 @default.
- W3209591983 hasConceptScore W3209591983C78519656 @default.
- W3209591983 hasConceptScore W3209591983C78597825 @default.
- W3209591983 hasConceptScore W3209591983C86803240 @default.
- W3209591983 hasConceptScore W3209591983C91306197 @default.
- W3209591983 hasLocation W32095919831 @default.
- W3209591983 hasOpenAccess W3209591983 @default.
- W3209591983 hasPrimaryLocation W32095919831 @default.
- W3209591983 hasRelatedWork W1862283402 @default.
- W3209591983 hasRelatedWork W2093316104 @default.
- W3209591983 hasRelatedWork W2185392789 @default.
- W3209591983 hasRelatedWork W2188643996 @default.
- W3209591983 hasRelatedWork W2982239794 @default.
- W3209591983 hasRelatedWork W3109963936 @default.
- W3209591983 hasRelatedWork W3122978514 @default.
- W3209591983 hasRelatedWork W4206184543 @default.
- W3209591983 hasRelatedWork W4316036674 @default.
- W3209591983 hasRelatedWork W2186046077 @default.
- W3209591983 isParatext "false" @default.
- W3209591983 isRetracted "false" @default.
- W3209591983 magId "3209591983" @default.
- W3209591983 workType "article" @default.