Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209621574> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3209621574 endingPage "43" @default.
- W3209621574 startingPage "31" @default.
- W3209621574 abstract "Electrocardiogram (ECG) monitoring models are commonly employed for diagnosing heart diseases. Since ECG signals are normally acquired for a longer time duration with high resolution, there is a need to compress the ECG signals for transmission and storage. So, a novel compression technique is essential in transmitting the signals to the telemedicine center to monitor and analyse the data. In addition, the protection of ECG signals poses a challenging issue, which encryption techniques can resolve. The existing Encryption-Then-Compression (ETC) models for multimedia data fail to properly maintain the trade-off between compression performance and signal quality. In this view, this study presents a new ETC with a diagnosis model for ECG data, called the ETC-ECG model. The proposed model involves four major processes, namely, pre-processing, encryption, compression, and classification. Once the ECG data of the patient are gathered, Discrete Wavelet Transform (DWT) with a Thresholding mechanism is used for noise removal. In addition, the chaotic map-based encryption technique is applied to encrypt the data. Moreover, the Burrows-Wheeler Transform (BWT) approach is employed for the compression of the encrypted data. Finally, a Deep Neural Network (DNN) is applied to the decrypted data to diagnose heart disease. The detailed experimental analysis takes place to ensure the effective performance of the presented model to assure data security, compression, and classification performance for ECG data." @default.
- W3209621574 created "2021-11-08" @default.
- W3209621574 creator A5001410740 @default.
- W3209621574 creator A5055036303 @default.
- W3209621574 creator A5074800368 @default.
- W3209621574 date "2022-01-01" @default.
- W3209621574 modified "2023-09-26" @default.
- W3209621574 title "Heart Disease Diagnosis Using Electrocardiography (ECG) Signals" @default.
- W3209621574 cites W1990883815 @default.
- W3209621574 cites W2009460929 @default.
- W3209621574 cites W2045254342 @default.
- W3209621574 cites W2050770647 @default.
- W3209621574 cites W2060735822 @default.
- W3209621574 cites W2065359450 @default.
- W3209621574 cites W2155321485 @default.
- W3209621574 cites W2159167288 @default.
- W3209621574 cites W2165939650 @default.
- W3209621574 cites W2169382889 @default.
- W3209621574 cites W2290485319 @default.
- W3209621574 cites W2702116941 @default.
- W3209621574 cites W2801019927 @default.
- W3209621574 cites W2892375924 @default.
- W3209621574 cites W2900073629 @default.
- W3209621574 cites W2970473072 @default.
- W3209621574 doi "https://doi.org/10.32604/iasc.2022.017622" @default.
- W3209621574 hasPublicationYear "2022" @default.
- W3209621574 type Work @default.
- W3209621574 sameAs 3209621574 @default.
- W3209621574 citedByCount "0" @default.
- W3209621574 crossrefType "journal-article" @default.
- W3209621574 hasAuthorship W3209621574A5001410740 @default.
- W3209621574 hasAuthorship W3209621574A5055036303 @default.
- W3209621574 hasAuthorship W3209621574A5074800368 @default.
- W3209621574 hasBestOaLocation W32096215741 @default.
- W3209621574 hasConcept C115961682 @default.
- W3209621574 hasConcept C124101348 @default.
- W3209621574 hasConcept C148730421 @default.
- W3209621574 hasConcept C153180895 @default.
- W3209621574 hasConcept C154945302 @default.
- W3209621574 hasConcept C191178318 @default.
- W3209621574 hasConcept C196216189 @default.
- W3209621574 hasConcept C38652104 @default.
- W3209621574 hasConcept C41008148 @default.
- W3209621574 hasConcept C47432892 @default.
- W3209621574 hasConcept C78548338 @default.
- W3209621574 hasConceptScore W3209621574C115961682 @default.
- W3209621574 hasConceptScore W3209621574C124101348 @default.
- W3209621574 hasConceptScore W3209621574C148730421 @default.
- W3209621574 hasConceptScore W3209621574C153180895 @default.
- W3209621574 hasConceptScore W3209621574C154945302 @default.
- W3209621574 hasConceptScore W3209621574C191178318 @default.
- W3209621574 hasConceptScore W3209621574C196216189 @default.
- W3209621574 hasConceptScore W3209621574C38652104 @default.
- W3209621574 hasConceptScore W3209621574C41008148 @default.
- W3209621574 hasConceptScore W3209621574C47432892 @default.
- W3209621574 hasConceptScore W3209621574C78548338 @default.
- W3209621574 hasIssue "1" @default.
- W3209621574 hasLocation W32096215741 @default.
- W3209621574 hasOpenAccess W3209621574 @default.
- W3209621574 hasPrimaryLocation W32096215741 @default.
- W3209621574 hasRelatedWork W1577789985 @default.
- W3209621574 hasRelatedWork W1982375519 @default.
- W3209621574 hasRelatedWork W2033000528 @default.
- W3209621574 hasRelatedWork W2037328875 @default.
- W3209621574 hasRelatedWork W2120348721 @default.
- W3209621574 hasRelatedWork W2130242662 @default.
- W3209621574 hasRelatedWork W2327586305 @default.
- W3209621574 hasRelatedWork W2541950815 @default.
- W3209621574 hasRelatedWork W2792520941 @default.
- W3209621574 hasRelatedWork W2942471066 @default.
- W3209621574 hasVolume "32" @default.
- W3209621574 isParatext "false" @default.
- W3209621574 isRetracted "false" @default.
- W3209621574 magId "3209621574" @default.
- W3209621574 workType "article" @default.